浮点数截断法:四舍五入的精确模拟

理论解释:

1. 目标

假设 a = 3.14159,我们想四舍五入到 小数点后两位(即 3.143.15)。

2. 步骤拆解

     (1) a * 100

  • a 放大 100 倍,让小数点后两位变成整数部分:
  • 3.14159 * 100 = 314.159

    (2) + 0.5

  • 关键步骤:如果小数部分 ≥ 0.5,则整数部分 +1
  • 314.159 + 0.5 = 314.659
  • 如果原数是 3.146(即 314.6),则:

  • 314.6 + 0.5 = 315.1

    (3) (int) 强制截断

  • 强制转换为 int丢弃小数部分(不是四舍五入,而是直接截断):
  • (int)314.659 = 314
    (int)315.1 = 315

    这样:

  • 314.159 → 314(因为 0.659 < 1,相当于 3.14159 舍去)
  • 314.6 → 315(因为 0.1 < 1,但整数部分已经是 315,相当于 3.146 进位)

     (4) / 100.0

  • 最后缩小 100 倍,恢复原来的数量级:
  • ​314 / 100.0 = 3.14
    315 / 100.0 = 3.15

    3. 为什么能保证精确?

  • 浮点数存储可能不精确(如 3.145 可能存储为 3.144999999...),直接用 %.2f 可能会错误舍入。
  • (int)(x + 0.5) 是经典的“四舍五入”方法,不依赖浮点数的内部表示,而是利用整数截断特性,确保:
  • 小数部分 ≥ 0.5 → 进位
  • 小数部分 < 0.5 → 舍去

例题:

代码如下:

错误示例

(1)

(2)

(3)

正确代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值