最多约数问题。正整数 x 的约数是能整除x的正整数,其约数的个数记为div(x),例如div(10)=4。设 a 和 b 是两个正整数,找出 a 和 b 之间约数个数最多的数 x 的约数个数。
样例输入: 1 36
样例输出: 9
用到了质因数拆分,一个数的所有因数都可以用质数乘以它的指数来表示出来
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define M 1001
int prime[M];
int vis[M];
void init()
{
int i,j,k=0;
memset(vis,0,sizeof(vis));
for (i=2;i<=M;i++)
if (!vis[i])
{
prime[k++]=i;
for (j=i+i;j<=M;j+=i)
vis[j]=1;
}
}
int fun(int n)
{ //拆成质因子分解
int temp=n;
int i=0,sum=1;
while (n>prime[i])
{
int cnt=0;
temp=n;
while (temp%prime[i]==0&&temp)
{
cnt++;
temp/=prime[i];
}
i++;
sum*=(cnt+1); //考虑到0次方,所以加个1
}
return sum;
}
int main()
{
int a,b,ans=0;
init();
scanf("%d %d",&a,&b);
for (int i=a;i<=b;i++)
if (ans<fun(i))
ans=fun(i);
printf("%d\n",ans);
return 0;
}