题目来源:洛谷P1622 原题面
题目描述
Caima王国中有一个奇怪的监狱,这个监狱一共有P个牢房,这些牢房一字排开,第i个紧挨着第i+1个(最后一个除外)。现在正好牢房是满的。
上级下发了一个释放名单,要求每天释放名单上的一个人。这可把看守们吓得不轻,因为看守们知道,现在牢房中的P个人,可以相互之间传话。如果某个人离开了,那么原来和这个人能说上话的人,都会很气愤,导致他们那天会一直大吼大叫,搞得看守很头疼。如果给这些要发火的人吃上肉,他们就会安静点。
输入输出格式
输入格式:
第一行两个数P和Q,Q表示释放名单上的人数;
第二行Q个数,表示要释放哪些人。
输出格式:
仅一行,表示最少要给多少人次送肉吃。
输入输出样例
输入样例:
20 3
3 6 14
输出样例:
35
数据规模
对于100%的数据1≤P≤1000; 1≤Q≤100;Q≤P;且50%的数据 1≤P≤100;1≤Q≤5
拖了好久的区间dp
题目理解
直线上有一些点,释放一个点的代价是其两侧连续未释放点的个数和,现在释放它们中的指定一部分,求最小花费。
样例说明
先放 14 14 14号犯人,给 19 19 19个人肉吃,再放 6 6 6号犯人,给 12 12 12个人肉吃,最后放 3 3 3号,给 4 4 4个人肉吃,一共 35 35 35个。
解题思路
把每个指定被释放的点看做断点,就可以将序列分割成几个部分。将这几个分割开的序列重新合并,两个合并序列中项的数目作为合并的代价,直到整个序列还原,便等同于将所有指定点被释放的代价。
所以可以参照合并石子的做法,用f[i][j]表示区间i-j合并还原的最小代价。
但之前说需要两个合并序列中项的数目,这则需要前缀和维护了。所以另外设置一个s数组储存当前节点不能被释放的点的个数,通过减法获取区间不能被释放的点的个数。
还有一个问题,最后一个被释放点的后面部分如果按上述前缀和方法将不会统计,应增加一个m+1号点使得这一段存在。
所以方程如下:
f [ i ] [ j ] = m i n ( f [ i ] [ j ] , f [ i ] [ k ] + f [ k + 1 ] [ j ] + s [ j ] − s [ i − 1 ] + j − i − 1 ) f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+s[j]-s[i-1]+j-i-1)