48. 旋转图像
题目描述
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
解题心得
本题困扰了我好长时间,看似简单,实则……
在纸上进行矩阵位置的映射分析,分析坐标规律,开开心心的写程序,发现错了……
原因是如果只是两两交换的话,有多次交换就会把顺序完全打乱,之前的映射规律也就不复存在了。
所以怎么办?
看了评论区有人提供了新的思路,从外层到内层依次进行交换。
对呀!这样就不会相互影响了呀!建议画图分析。
下面是大神的解释:刚开始,假设一个5*5的数组,然后我先旋转四个角的元素,这个很简单,简单排序算法中两个元素交换的延申而已。然后我尝试交换下一组元素,我交换完成外圈元素时,发现了很有规律的现象: 当我们把数组值的行列下标对应到坐标系中时,可以将各元素,看做一个点,那么整个坐标系中有四个点(这里不能贴图,建议在纸上画出来,方便理解)。四个点的规律如下:四个点绝对向一个方向移动,且有一个下标保持不变。
- 左上角的点,绝对向右移动,
- 右上角的点,绝对向下移动,
- 右下角的点,绝对向左移动,
- 左下角的点,绝对向上移动,
- 归纳得到有两个固定不变的值,其对应在第一次旋转中,分别是0和matrix.length。
- 剩余两个变化的值也有规律,分别是两个运动轨迹:从0->matrix.length和从matrix.length->0
- 提取运动轨迹间的关系,就能通过循环,完成第一圈旋转
- 开始内圈旋转的时候,变换固定值,约束内圈,返回到开始的思路,继续旋转
把大神的转换成python程序,就得到了正确方法。
执行用时 : 56 ms, 在Rotate Image的Python3提交中击败了65.54% 的用户
解题代码
class Solution:
def rotate(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
begin = 0
end = len(matrix)-1
while begin <= end:
tem1 = begin
tem2 = end
while tem1 != end:
temp = matrix[begin][tem1]
matrix[begin][tem1] = matrix[tem2][begin]
matrix[tem2][begin] = matrix[end][tem2]
matrix[end][tem2] = matrix[tem1][end]
matrix[tem1][end] = temp
tem1 = tem1+1
tem2 = tem2-1
begin = begin+1
end = end-1
本题也看了许多其他的解答,可是有些都难以理解,所以不做评论。这里学习最容易吸收最容易融合成自己知识的算法。