《机器学习》西瓜书笔记——chapter 7:贝叶斯分类器

《机器学习》西瓜书笔记——chapter 7:贝叶斯分类器

Marshal Zheng
2019-04-16

西瓜书笔记更新啦!

7.1 贝叶斯决策论

假设有 N N N种可能类别标记,即 y = c 1 , c 2 , ⋯   , c N y = {c_1,c_2,\cdots,c_N} y=c1,c2,,cN λ i j \lambda_{ij} λij是将一个真实标记为 c j c_j cj的样本误分类为 c i c_i ci所产生的损失,基于后验概率 P ( c i ∣ x ) P(c_i | x) P(cix)可获得将样本 x x x分类为 c i c_i ci所产生的期望损失,即在样本 x x x上的“条件风险”
R ( c i ∣ x ) = ∑ j = 1 N λ i , j P ( c j ∣ x ) R(c_i | x) = \sum_{j=1}^{N} \lambda_{i,j}P(c_j | x) R(cix)=j=1Nλi,jP(cjx)
为了最小化总体风险,就产生了贝叶斯判定准则:只需在每个样本上选择那个能使条件风险 R ( c ∣ x ) R(c | x) R(cx)最小的类别标记,即
h ∗ ( x ) = arg ⁡ max ⁡ c ∈ y R ( c ∣ x ) h^*(x) = \mathop{\arg\max}_{c \in y} R(c | x) h(x)=argmaxcyR(cx)
其中, h ∗ ( x ) h^*(x) h(x)为贝叶斯最优分类器,与之对应的 R ( h ∗ ) R(h^*) R(h)为贝叶斯风险, 1 − R ( h ∗ ) 1-R(h^*) 1R(h)反映了分类器所能达到的最好性能,即通过机器学习所能产生的模型精度的理论上限。

具体地,若是最小化分类错误率,则误判损失 λ i j \lambda_{ij} λij可写为:
λ i j = { 1 , i f i = j 0 , o t h e r w i s e \lambda_{ij} = \left\{\begin{array}{cc} 1, & if\quad i=j\\ 0, & otherwise \end{array}\right. λij={1,0,ifi=jotherwise
此时条件风险
R ( c i ∣ x ) = 1 − P ( c ∣ x ) R(c_i | x) = 1-P(c | x) R(cix)=1P(cx)
贝叶斯最优分类器为
h ∗ ( x ) = arg ⁡ min ⁡ c ∈ y P ( c ∣ x ) h^*(x) = \mathop{\arg\min}_{c \in y} P(c | x) h(x)=argmincyP(cx)

判别式模型

给定x,通过直接建模 P ( c ∣ x ) P(c | x) P(cx)来预测 c c c,例如决策树、BP神经网络、支持向量机等

考虑
P ( C ∣ X ) = P ( x , c ) P ( x ) P(C | X) = \frac{P(x,c)}{P(x)} P(CX)=P(x)P(x,c)
基于贝叶斯定理:
P ( C ∣ X ) = P ( c ) P ( x ∣ c ) P ( x ) P(C | X) = \frac{P(c)P(x | c)}{P(x)} P(CX)=P(x)P(c)P(xc)
其中等式右边:先验概率,样本x相对于类别c的类条件概率,归一化证据因子。

生成式模型

先对联合概率分布 P ( x , c ) P(x,c) P(x,c)建模,然后再由此获得 P ( c ∣ x ) P(c | x) P(cx)

7.2 极大似然估计

概率模型的训练过程就是参数估计过程。

两种不同解决方案:

  • 频率主义:认为参数固定,通过优化似然函数等准则确定参数值
  • 贝叶斯派:认为参数本身有分布,假定参数服从一个先验分布,然后基于观测数计算后验分布。

remark:计算似然过程中连乘容易下溢,通常使用对数似然。

7.3 朴素贝叶斯分类器

采用属性条件独立性假设:对已知类别,假设所有属性独立。


P ( C ∣ X ) = P ( c ) P ( x ∣ c ) P ( x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) P(C | X) = \frac{P(c)P(x | c)}{P(x)} = \frac{P(c)}{P(x)} \prod_{i=1}^{d}P(x_i | c) P(CX)=P(x)P(c)P(xc)=P(x)P(c)i=1dP(xic)
其中d为属性数目

由于所有类别 P ( x ) P(x) P(x)相同,因此有
h ∗ ( x ) = arg ⁡ max ⁡ c ∈ y P ( c ) ∏ i = 1 d P ( x i ∣ c ) h^*(x) = \mathop{\arg\max}_{c \in y} P(c) \prod_{i=1}^{d}P(x_i | c) h(x)=argmaxcyP(c)i=1dP(xic)
朴素贝叶斯分类器表达式

7.4 半朴素贝叶斯分类器

适当考虑一些属性之间的依赖。

最直接:假设所有属性都依赖于同一个属性——“超父”,然后通过交叉验证等模型选择方法来确定超父属性,由此形成SPODE方法。

另外还有TAN方法(基于最大带权生成树),其算法步骤:

  • step1 计算任意两个属性之间的条件互信息
  • step2 以属性为节点构建完全图,任意两个节点之间边权重设为I
  • step3 构建此完全图的最大带权生成树,挑选根变量,将边置为有向
  • step4 加入类别节点y,增加从y到每个属性的有向边。

TAN保留了强相关属性之间的依赖性。

AODE方法:集成学习机制,独依赖分类器,无需模型选择,能通过预计算节省预测时间,也可以采取懒惰学习方式在预测时再计算,易于实现增量学习。

7.5 贝叶斯网-信念网

借助有向无环图来刻画属性之间的依赖关系。用条件概率表来描述属性的联合概率分布。

img

结构

三种典型依赖:

  • 同父结构

img

  • V型结构

img

  • 顺序结构

img

分析变量间条件独立性*:有向分离法,算法:

  • step1 找出所有V型结构,在其两个父节点之间加上一条无向边
  • step2 将所有有向边转变为无向边

由此产生“道德图”,父节点相连成为“道德化“

学习

若网络结构已知,即属性间的依赖关系已知,只需通过对训练样本“计数”,估计出每个节点的条件概率表即可。——参数学习

往往现实中不知道网格结构,所以要寻找最恰当结构:评分搜索是常用方法。——结构学习

评分搜索:先定义一个评分函数,以此来评估贝叶斯网与训练数据之间的期和程度,然后基于这个评分函数来寻找结构最优的贝叶斯网。

常用评分函数基于信息论准则,此类准则将学习问题看做一个数据压缩任务,学习目标是找到一个能以最短编码长度描述训练数据的模型,此时编码成都包括了描述模型自身所需的字节长度和使用该模型描述数据所需的字节长度。

最小描述长度准则:选择综合编码长度最短的贝叶斯网。

不幸的是,从所有可能的网络结构空间搜索最优贝叶斯网结构是一个NP难问题。

有两种常用策略能在有限时间求得近似解:

  • 贪心发,例如从某个网络结构出发,每次调整一条边(增加、删除或者调整方向),直到评分函数值不再降低为止;
  • 通过给网络结构施加约束来削减搜索空间,例如将网络结构限定为树形结构。
推断

根据贝叶斯网定义的联合概率分布精确计算后验概率是十分精确的,可是这种精确推断是NP难的,所以需要近似推断。

常用吉布斯采样完成。

吉布斯采样算法收敛速度较慢,且若不能保证马尔科夫链平稳分布,可能给出错误估计

7.6 EM算法

用于估计参数隐变量(存在为观测的属性变量值)

迭代式方法,若参数已知,则可以根据训练数据推断出最优隐变量的值,反之若隐变量已知,可以方便对参数做极大似然估计。

(EM算法是非梯度优化方法)

隐变量估计也可以用梯度下降法来求解,但是指数级上升的求和项数,给计算带来问题。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值