
图像增强
文章平均质量分 96
欠曝光、过曝光、图像去雾、超分算法等
zyw2002
Talent hits a target no one else can hit; Genius hits a target no one else can see;
展开
-
论文详解——《Deep Color Consistent Network for Low-Light Image Enhancement》
微光图像增强(LLIE)研究了如何细化光照,获得自然的正常光照图像。目前的LLIE方法主要侧重于提高光照,而没有合理地将颜色信息纳入LLIE过程中来考虑颜色的一致性。因此,增强后的图像与地面真值之间往往存在色差。为了解决这个问题,我们提出了一种新的深颜色一致性网络,称为DCC-Net,以保持LLIE的颜色一致性。提出了一种新的“分而治之”的协同策略,该策略可以共同保存颜色信息,同时增强光照。具体来说,我们的DCC-Net解耦策略将每个彩色图像解耦为两个主要成分,即灰度图像和颜色直方图。原创 2023-08-23 16:20:42 · 1662 阅读 · 0 评论 -
论文详解——《Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement》
弱光图像增强(LLIE)研究如何提高照明和产生正常光图像。现有的方法大多采用全局统一的方式对微光图像进行改进,而没有考虑不同区域的语义信息。如果没有语义先验,网络很容易偏离区域的原始颜色。为了解决这一问题,我们提出了一种新的语义感知知识引导框架(semantic-aware knowledge-guided framework, SKF),该框架可以帮助弱光增强模型学习包含在语义分割模型中的丰富和多样化的先验。我们专注于从三个关键方面整合语义知识 :一个。原创 2023-08-23 10:43:32 · 3065 阅读 · 0 评论 -
论文及代码详解——Restormer
由于对大补丁的训练需要花费更长的时间,所以随着补丁大小的增加,我们减少了批处理的大小,以便在每个优化步骤中保持与固定补丁训练相同的时间。在代码实现上,用于生成k,q,v的三条支路中的1x1的卷积(point-wise)和3x3的Dconv(depth-wise) 是在原始输入上一起做的,完成后再在通道维度分成三块。但是在代码实现部分,两条支路中的1x1的卷积(point-wise)和3x3的Dconv(depth-wise) 是在原始输入上一起做的,完成后再在通道维度分成两块。原创 2023-08-22 17:32:39 · 5684 阅读 · 0 评论 -
代码详解 —— VGG Loss
可以把VGG网络看成是数个vgg_block的堆叠,每个vgg_block由几个卷积层+ReLU层,最后加上一层池化层组成。VGG网络名称后面的数字表示整个网络中包含参数层的数量(卷积层或全连接层,不含池化层),如图所示。假设输入分别是x和y,vgg loss 的值就是分别将x和y将5个sclice输出计算loss,一共有5个loss。VGG网络采用重复堆叠的小卷积核替代大卷积核,在保证具有相同感受野的条件下,提升了网络的深度,从而提升网络特征提取的能力。,对应着VGG19中的各个网络层。原创 2023-08-14 10:29:09 · 3675 阅读 · 0 评论 -
论文及代码详解 ——《SNR-Aware Low-light Image Enhancement》
本文提出了一种新的弱光图像增强解决方案,通过综合利用和,利用空间变化操作动态增强像素。它们是对极低信噪比(SNR)图像区域的long-range操作和对其他区域的操作。我们提出在引导特征融合之前先考虑信噪比,并利用一种新的自注意模型构建SNR-aware Transformer,以避免来自极低信噪比的噪声图像区域的token。大量的实验表明,在7个具有代表性的基准测试中,我们的框架始终比SOTA方法获得更好的性能。原创 2023-08-13 19:34:33 · 6140 阅读 · 0 评论 -
超分任务中常见的上采样方式
而灰度值未知的插值点 (x, y),根据双线性插值法的约束,可以先由像素坐标点 (x0, y0) 和 (x0, y1) 在 y 轴向作一维线性插值得到 f(x0, y)、由像素坐标点 (x1, y0) 和 (x1, y1) 在 y 轴向作一维线性插值得到 f(x1, y),然后再由 (x0, y) 和 (x1, y) 在 x 轴向作一维线性插值得到插值点 (x, y) 的灰度值 f(x, y)。例如,插值点 x 坐落于 坐标点 xi 的邻域,那么其值 f(x) 就等于 f(xi)。原创 2023-08-11 10:51:38 · 1038 阅读 · 0 评论 -
超分算法ESPCN:《Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel》
提出了一种新的上采样方式,对于SR(super-resolution) 任务的计算速度和重建效果都有不错的提升。文章推出了一种在以往算法(SRCNN、Bicubic)上对于重建表现力以及计算效率(重建速度、计算资源损耗)都有一定提升的SR算法——ESPCN。SRCNN先对输入图像做Bicubic插值,然后进行特征提取,这种方式相当于直接在HR层面做超分,作者证明这种方式是一种次优策略且会带来计算复杂度的提升。这是一种直接对输入LR图像做特征提取。在网络中引入了一种亚像素卷积层。原创 2023-08-10 09:57:05 · 1834 阅读 · 0 评论