Dreamoon wants to climb up a stair of n steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer m.
What is the minimal number of steps making him climb to the top of the stairs that satisfies his condition?
The single line contains two space separated integers n, m (0 < n ≤ 10000, 1 < m ≤ 10).
Print a single integer — the minimal number of moves being a multiple of m. If there is no way he can climb satisfying condition print - 1 instead.
10 2
6
3 5
-1
For the first sample, Dreamoon could climb in 6 moves with following sequence of steps: {2, 2, 2, 2, 1, 1}.
For the second sample, there are only three valid sequence of steps {2, 1}, {1, 2}, {1, 1, 1} with 2, 2, and 3 steps respectively. All these numbers are not multiples of 5.
题目大意:
给出n个台阶,每次可以移动1个台阶或者2个台阶,要求移动的步数最小且可以被m整除。
解法:
设:移动2个台阶为x步,移动1个台阶为y步。
2x+y=n, (x+y)%m=0, ans=(x+y)min
只需要枚举y,就可以确定x,再将后面2个条件进行判断即可。
代码:
#include <cstdio>
int n, m, ans;
int main() {
scanf("%d%d", &n, &m);
ans = 10010;
for (int i = 0; i <= n; i++) {
if ((n-i)%2) continue;
int y = i, x = (n-i)/2;
if ((x+y)%m == 0)
if (x+y < ans)
ans = x+y;
}
if (ans == 10010)
printf("-1\n");
else
printf("%d\n", ans);
}