乘法游戏是在一行牌上进行的。每一张牌包括了一个正整数。在每一个移动中,玩家拿出一张牌,得分是用它的数字乘以它左边和右边的数,所以不允许拿第1张和最后1张牌。最后一次移动后,这里只剩下两张牌。你的目标是使得分的和最小。例如,如果数是10 1 50 20 5,依次拿1、20、50,总分是10*1*50+50*20*5+10*50*5=8000,而拿50、20、1,总分是1*50*20+1*20*5+10*1*5=1150。
输入文件的第一行包括牌数(3< =n< =100),第二行包括N个1-100的整数,用空格分开。
输出文件
输入文件的第一行包括牌数(3< =n< =100),第二行包括N个1-100的整数,用空格分开。
输出文件
只有一个数字:最小得分
样例输入
6
10 1 50 50 20 5
样例输出
3650
样例输入
6
10 1 50 50 20 5
样例输出
3650
解:我们可以推一下,我们要取数字,必须在1到n之间取。
那么我们可以设某次取得是第i个数,那么下一次取得数,必须在1-i或者i-n之间,
其他的我们可以类推。那么最终,我们可以用一个dfs+dp解决这道题。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<string>
#include<map>
#include<algorithm>
using namespace std;
#define LL long long
const LL inf=1e9+10;
const LL maxm=1e2+10;
LL a[maxm];
LL dp[maxm][maxm];
LL n;
//void Init()
//{
// for(LL i=1;i<=maxm;i++)
// {
// for(LL j=1;j<=maxm;j++)
// dp[i][j]=inf;
// }
//}
LL dfs(LL l,LL r)
{
if(l+1==r)
return 0;
if(dp[l][r])
{//如果一旦有了解,就返回,因为一开始dp数组全为0,一旦不为0,
//就必须返回,不然会超时。我就在这个地方错了n次
return dp[l][r];
}
LL sum=inf;
for(LL i=l+1;i<=r-1;i++)
{
sum=min(sum,dfs(l,i)+dfs(i,r)+a[l]*a[i]*a[r]);//用sum保存l到r的符合题意最小数
}
dp[l][r]=sum;
return sum;
}
int main()
{
while(scanf("%lld",&n)!=EOF)
{
memset(dp,0,sizeof(dp));
//Init();
for(LL i=1;i<=n;i++)
scanf("%lld",&a[i]);
LL ans=dfs(1,n);
printf("%lld\n",ans);
}
return 0;
}
/*
6
10 1 50 50 20 5 ans:3650
*/