引言
人工智能目前处于超速发展阶段,大语言模型(LLM)已经展现出惊人的能力,但同时也面临着知识陈旧、幻觉生成以及推理能力不足等挑战。为解决这些问题,研究人员开发了不同的知识增强框架,其中最引人注目的是检索增强生成(Retrieval-Augmented Generation,RAG)和知识增强生成(Knowledge-Augmented Generation,KAG)。本文将深入比较这两种技术,探讨它们的工作原理、优缺点以及适用场景,帮助读者或开发者理解它们在生成式AI中的地位与如何在开发中做出选择。
RAG:检索增强生成
工作原理
RAG是一种结合检索系统和生成模型的混合框架,通过动态获取外部知识来增强大语言模型的回答能力。
其基本工作流程可分为三个关键步骤:
- 检索阶段:用户提出查询后,系统从外部数据源(如文档库、网页、数据库等)检索出与查询相关的文档或文本片段。
- 知识融合:将检索到的信息与用户的原始查询结合,形成增强上下文。
- 生成回答:大语言模型基于增强上下文生成最终回答。
例如,当用户询问"2024年人工智能的最新发展趋势是什么"时,RAG系统会从最新的科技报道、研究论文中检索相关信息,然后结合这些实时数据生成一个全面准确的回答。
技术优势
- 动态知识更新:RAG能够获取最新信息,不受模型训练数据时间的限制。
- 减少幻觉生成:通过引用真实文档,RAG大大降低了模型"编造"信息的可能性。
- 开放域适应性:RAG在处理开放性问题时表现出色,能够从广泛的数据源中检索信息,提供全面的回答。
- 可拓展性强:随着知识库的扩充,RAG的能力可以不断提升,无需重新训练模型。
局限性
- 响应延迟:检索步骤不可避免地增加了系统响应时间。
检索质量依赖:如果检索到的文档不准确或不相关,生成的回答质量也会受到影响。 - 系统复杂度高:需要维护检索系统、向量数据库等额外组件,增加了系统复杂性。
KAG:知识增强生成
工作原理
KAG将结构化的知识图谱(Knowledge Graph,KG)集成到大语言模型中,实现逻辑推理和多跳查询功能。与RAG检索非结构化数据不同,KAG直接利用结构化的知识进行生成。
其工作流程为:
- 知识表示:将领域知识以实体和关系的形式构建成知识图谱。
- 图谱集成:将知识图谱中的结构化信息融入到生成模型中。
- 增强生成:模型在生成回答时,能够利用知识图谱中的实体关系进行多跳推理。
在医学领域的应用中,KAG可以利用疾病、症状、治疗方法之间的结构化关系,进行精确的诊断推理。例如,当输入某些症状时,KAG能够通过知识图谱中的关联,推断可能的疾病和治疗方案。
技术优势
- 结构化知识支持:借助知识图谱的结构化特性,KAG在回答事实性问题时准确性高。
- 多跳推理能力:能够在不同实体间建立关联,解决复杂的推理问题。
- 可解释性强:回答可以追溯到知识图谱中的具体节点,提高了模型决策的透明度。
- 专业领域表现出色:在医疗、法律等专业领域,KAG能够提供符合领域规范的准确回答。
局限性
- 知识图谱构建成本高:构建和维护高质量的知识图谱需要大量专业知识和人力投入。
- 知识更新困难:相比RAG,知识图谱的更新频率较低,难以适应快速变化的信息环境。
- 覆盖范围有限:知识图谱往往聚焦于特定领域,难以覆盖广泛的开放域知识。
RAG与KAG的关键差异
1. 知识来源与类型
RAG:主要使用非结构化数据,如文档、网页、新闻报道等。
KAG:使用结构化的知识图谱,包含实体和实体间的关系。
2. 知识获取方式
RAG:动态检索,实时从外部数据源获取信息。
KAG:预先定义的知识结构,直接集成到模型中。
3. 推理能力
RAG:主要依靠检索到的文本片段进行简单推理,多跳推理能力有限。
KAG:利用知识图谱的结构化特性,能够进行复杂的多跳推理。
4. 适用场景
RAG:适合需要最新信息的场景,如新闻总结、实时市场分析等。
KAG:适合专业领域的精确推理,如医疗诊断、法律咨询等。
应用场景对比
RAG的理想应用场景
- 实时客户支持:在电商平台中,RAG可以检索最新的产品信息、配送状态等,为客户提供及时准确的支持。
- 学术研究辅助:研究人员可以使用RAG快速检索和汇总最新的学术论文,提高研究效率。
- 新闻聚合与总结:RAG能够从多个来源检索最新新闻,生成全面的新闻摘要。
KAG的理想应用场景
- 医疗诊断系统:KAG可以利用医学知识图谱,根据患者症状进行多步推理,提供可能的诊断和治疗建议。
- 法律合同分析:基于法律知识图谱,KAG能够分析合同条款之间的关系,识别潜在风险。
- 金融投资顾问:KAG可以利用金融实体(如公司、产品、市场)之间的关系,提供更有深度的投资建议。
用户查询
|
├── RAG路径 ──────────────┐
| | |
| ├── 检索相关文档 |
| | (从开放数据源) |
| | |
| ├── 文档与查询融合 |
| | |
| └── 生成模型处理 |
| |
├── KAG路径 ──────────────┐
| | |
| ├── 知识图谱中查找 |
| | 相关实体和关系 |
| | |
| ├── 构建推理路径 |
| | |
| └── 生成模型处理 |
| |
v v
RAG回答特点: KAG回答特点:
- 基于最新信息 - 基于结构化知识
- 广泛的知识覆盖 - 精确的专业领域推理
- 可能延迟较高 - 推理过程可解释
- 适合开放性问题 - 适合事实性问题
结论
RAG通过动态检索实时信息,适合处理需要最新知识的开放性问题;而KAG则通过结构化知识图谱提供精确的推理能力,适合专业领域的事实性问题。
在实际应用中,选择哪种技术应基于具体需求,包括知识更新频率、推理复杂度、响应时间要求等因素。随着AI技术的不断演进,也可能看到融合这两种方法优势的混合系统出现,为各种复杂场景提供更智能、更精准的知识增强能力。例如:使用RAG获取最新的非结构化信息,同时利用KAG的知识图谱进行深度推理;将文本、图像、视频等多种模态的知识结合起来,提供更全面的增强能力;根据查询的性质和复杂程度,智能切换使用RAG或KAG,优化回答质量和响应速度。
论文参考:
- Chan, Z. et al. (2024). Cache-Augmented vs. Retrieval-Augmented Generation
- arxiv.org/abs/2503.10677 - “A Survey on Knowledge-Oriented Retrieval-Augmented Generation”
- arxiv.org/abs/2503.18016 - “Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook”
- medium.com/@ahmed.missaoui.pro_79577/rag-vs-kag-a-comparative-analysis-of-retrieval-augmented-generation-and-knowledge-augmented-9080668d211a