理论第五课——排列与组合

本文详细介绍了排列和组合的基本概念,包括排列的定义、全排列、可重复排列、不尽相异元素的全排列以及环状排列。同时,阐述了组合的定义,包括可重复排列和通常意义的组合。文章给出了排列数和组合数的计算公式,并探讨了基本计数原理,如加法原理和乘法原理。此外,还涉及二项式定理及其相关性质,如二项式系数、杨辉三角和组合数的奇偶性。这些理论在信息技术领域中的概率统计、算法设计等领域有着广泛应用。
摘要由CSDN通过智能技术生成

简介

排列分类:选排列和全排列,可重复排列,不尽相异元素的全排列,环状排列

组合分类:通常意义的组合,可重复排列

公式

排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1

正在上传…重新上传取消排列组合

组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)∧2/m!=A(n,m)/m!;  C(n,m)=C(n,n-m)。(其中n≥m)

其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

符号

C-Combination 组合数

A-Arrangement 排列数(在旧教材为P-Permutation)

N-元素的总个数

M-参与选择的元素个数

!-阶乘

折叠基本计数原理

⑴加法原理和分类计数法

正在上传…重新上传取消排列组合icon-default.png?t=M7J4https://so1.360tres.com/t01b905a8bf5f3b98a2.jpg

⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

⑵乘法原理和分步计数法

⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

⒉合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

二项式定理

(a+b)^n=Σ(0->n)C(in)a^(n-i)b^i

通项公式:a_(i+1)=C(in)a^(n-i)b^i

二项式系数:C(in)

正在上传…重新上传取消排列组合      杨辉三角:右图。两端是1,除1外的每个数是肩上两数之和。

系数性质:⑴和首末两端等距离的系数相等;正在上传…重新上传取消杨辉三角

⑵当幂指数是奇数时,中间两项最大且相等;

⑶当幂指数是偶数时,中间一项最大。

⑷奇数项和偶数项总和相同,都是2^(n-1);

⑸所有系数总和是2^n

组合数的奇偶

奇偶定义:对组合数C(n,k) (n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数。

下面是判定方法:

结论:

对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。

证明:

对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。

证明:

利用数学归纳法:

由C(n,k) = C(n-1,k) + C(n-1,k-1);

那么,下期再见,拜拜!

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值