二叉树的性质

1、二叉树的性质

1.1 在二叉树的第i层至多有2i-1个结点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 

1.2 深度为k的二叉树至多有2k-1个结点(k≥1)

在这里插入图片描述
在这里插入图片描述

 

1.3 叶子数 = 度为2的结点 + 1

对任何一棵二叉树T,如果其叶子数为n0,度为2的结点数为n2,则n0 = n2+1

从下往上分析: 总边数 = 结点个数 - 1<因为根结点是没有双亲的,所以减去1>
从上往下分析: 总边数 = 度为2的结点*2 + 度为1的结点 * 1 <度为2就会往下延2条边,度为1会往下延1条边>
在这里插入图片描述
B = n-1 = B = n2*2+n1*1
算出总结点数n
n = n2*2+n1*1+1
又因为:
n = n2+n1+n0 <度为2的结点+度为1的结点+度为0的结点 = 等于结点数>
将这两个约分
n2+n1+n0 = n2*2+n1*1+1
n0 = n2+1
在这里插入图片描述
 

2、满二叉树与完全二叉树

2.1 满二叉树

在这里插入图片描述
在这里插入图片描述
 

2.2 完全二叉树

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

都是完全二叉树
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 

3、完全二叉树的性质

3.1 具有n个结点的完全二叉树的深度为[log2n] + 1

在这里插入图片描述
在这里插入图片描述
 

3.2 双亲结点编号与孩子结点编号之间的关系

如果对一棵树n个结点的完全二叉树(深度为log2n+1)按层序编号(从第1层到log2n+1层,每层从左到右),则对任一结点(1≤i≤n),有
(1)如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点i/2
(2)如果2i>n,则结点i为叶子结点,无左孩子;否则,其左孩子是结点2i
(3)如果2i+1>n,则结点i无右孩子;否则,其右孩子是结点2i+1
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 

性质总结

在这里插入图片描述

所有二叉树都有的性质

  1. 在二叉树的第i层至多有2i-1个结点
  2. 深度为k的二叉树至多有2k-1个结点(k≥1)
  3. 对任何一棵二叉树T,如果其叶子数为n0,度为2的结点数为n2,则n0 = n2+1

完全二叉树

  1. 具有n个结点的完全二叉树的深度为[log2n] + 1
  2. 如果对一棵树n个结点的完全二叉树(深度为log2n+1)按层序编号(从第1层到log2n+1层,每层从左到右),则对任一结点(1≤i≤n),有
    (1)如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点i/2
    (2)如果2i>n,则结点i为叶子结点,无左孩子;否则,其左孩子是结点2i
    (3)如果2i+1>n,则结点i无右孩子;否则,其右孩子是结点2i+1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值