题意:
题目比较繁琐,其实就是从给的图中,找出一棵树,使得这棵树最大的边尽可能小,然后求的就是这条“最大边”。
有两种解法,一是最小生成树中最大边即是答案(最小生成树采用贪心策略,每次选最小的边,那么生成的树中最大边一定是所有生成树中最大边中最小的)。二是采用spfa变形,这就和之前的地铁修建那道题一模一样(不过最后要取dis[1.2...n]中的最大值),将伸缩公式dis[to]>dis[top]+edge[i].w变成dis[to]>max(dis[top],edge[i].w),dis[to]代表从起点到达to点这条路径中的最大边,如果还有另外一条到达路径该点,并且这条路径中的最大边要小于dis[to],那么就将dis[to]更新。
代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<queue>
using namespace std;
#define inf 0x3f3f3f3f
int head[500050];
int dis[500050];
int tot;
int vis[500050];
struct Edge
{
int to;
int w;
int next;
} edge[200050];
void spfa(int root)
{
memset(dis,inf,sizeof(dis));
queue<int>Q;
Q.push(root);
dis[root]=0;
vis[root]=1;
int top,to;
while(!Q.empty())
{
top=Q.front();
vis[top]=0;
Q.pop();
for(int i=head[top];i!=-1;i=edge[i].next)
{
to=edge[i].to;
if(dis[to]>max(dis[top],edge[i].w))//变形
{
dis[to]=max(dis[top],edge[i].w);
if(!vis[to])
{
Q.push(to);
vis[to]=1;
}
}
}
}
}
void addedge(int u,int v,int w)
{
edge[tot].to=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot++;
edge[tot].to=u;
edge[tot].w=w;
edge[tot].next=head[v];
head[v]=tot++;
}
int main()
{
int n,m;
cin>>n>>m;
tot=0;
int root,a,b,c;
cin>>root;
memset(vis,0,sizeof(vis));
memset(head,-1,sizeof(head));
for(int i=1; i<=m; i++)
{
cin>>a>>b>>c;
addedge(a,b,c);
}
spfa(root);
int res=-1;
for(int i=1;i<=n;i++)
{
res=max(res,dis[i]);
}
cout<<res<<endl;
return 0;
}