实验 矩阵连乘问题

实验4 矩阵连乘问题

一、实验目的与任务

1. 问题:给定 n 个矩阵 A1,A2,..., An,矩阵Ai的形状为pi-1 * pi,要求给出A1,A2,..., An的运算次序,使得求解过程需要的乘法次数最少。

2. 理解动态规划法的设计思想。

二、实验内容

1. 实现矩阵连乘问题的动态规划算法;

2. 分析所实现算法的时间复杂度,得出你的结论

```c
#include <stdio.h>

void matrix_chain_order(int p[], int n, int m[7][7], int s[7][7]) {
int i, l, j, k, q;
for (i = 1; i <= n; i++) {
m[i][i] = 0;
}
for (l = 2; l <= n; l++) {
for (i = 1; i <= n - l + 1; i++) {
j = i + l - 1;
m[i][j] = 99999999;
for (k = i; k <= j - 1; k++) {
q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (q < m[i][j]) {
m[i][j] = q;
s[i][j] = k;
}
}
}
}
}

void print_optimal_parens(int s[7][7], int i, int j) {
if (i == j) {
printf("A%d", i);
} else {
printf("(");
print_optimal_parens(s, i, s[i][j]);
print_optimal_parens(s, s[i][j] + 1, j);
printf(")");
}
}

int main() {
int p[] = {30, 35, 15, 5, 10, 20, 25}; // 矩阵的度
int n = 6; // 矩阵的个数
int m[7][7], s[7][7];
matrix_chain_order(p, n, m, s);
printf("最少乘法次数为:%d\n", m[1][n]);
printf("最优的乘法次序为:");
print_optimal_parens(s, 1, n);
printf("\n");
return 0;
}
```

这段代码包含了`#include <stdio.h>`,以确保代码中使用的`printf`函数能够被正确识别。这样,代码应该能够正常运行并输出矩阵连乘问题的最少乘法次数和最优的法次序。

对于时间复杂度的分析,矩阵连乘问题的动态规划算法的时间复杂度为O(n^3),其中n为矩阵的个数。算法中的双重循环用于遍历所有区间段,第三重循环用于枚举断点,因此总的时间复杂度为O(n^3)。

动态规划是一种解决问题的数学方法,通常用于优化问题和组合优化问题。它的设计思想是通过将原问题分解为相互重叠的子问题,然后解决这些子问题,并将它们的解存储起来,从而避免重复计算,提高效率。

动态规划的设计思想通常包括以下几个步骤:

1. 确定状态:首先需要定义原问题和子问题的状态。状态是问题的关键属性,它可以用来描述问题的不同特征。对于每个状态,通常需要定义相应的状态转移方程。

2. 确定状态转移方程:状态转移方程描述了状态之间的关系,即如何从一个状态转移到另一个状态。通常,状态转移方程可以通过递推关系或者递归关系来定义。

3. 计算最优解:根据状态转移方程,计算每个子问题的最优解,并将这些解存储起来。通常可以使用数组、矩阵或者其它数据结构来存储子问题的解,以便后续的计算。

4. 构造最优解:最后,根据存储的子问题解,构造出原问题的最优解。通常可以通过回溯或者迭代的方式来构造最优解。

动态规划的设计思想通常适用于满足最优子结构和重叠子问题性质的问题。最优子结构指的是问题的最优解可以通过子问题的最优解来构造,而重叠子问题指的是问题的子问题之间存在重叠,即同一个子问题可能会被多次求解。

总的来说,动态规划的设计思想是通过将原问题分解为子问题,然后解决这些子问题,并将它们的解存储起来,从而实现高效问题求解。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值