POJ-1947-树形dp+01背包

题目大意:给定一棵树,问最少删去几条边能使得有一部分被分离出来的子树的节点个树为k的;

题目解析:定义dp[i][j]为当前在第i个节点使得以他为根的子树有j的节点所删掉最少的边树,那么枚举他的所有儿子的时候,如果不要这个子树那么dp[root][j]就需要+1,否则就是个01背包了;最后如果根不是整棵树的根的时候还需要+1,因为需要把它从它的父亲节点断掉;

AC代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
const int inf=0x3fffffff;
const int maxn=160;
int tot,head[maxn],n,m,dp[maxn][maxn],sum[maxn];
bool vis[maxn];
struct Edge
{
        int to,next;
}edge[maxn<<1];
void init()
{
        memset(head,-1,sizeof(head));
        tot=0;
}
void addedge(int u,int v)
{
        edge[tot].to=v;
        edge[tot].next=head[u];
        head[u]=tot++;
}
void dfs(int root,int fa)
{
                dp[root][1]=0;
        for(int i=head[root];i!=-1;i=edge[i].next)
        {
                int v=edge[i].to;
                if(fa==v)       continue;
                dfs(v,root);
                for(int j=m;j>=1;j--)
                {
                        int temp=dp[root][j]+1;
                        for(int k=1;k<j;k++)
                        {
                                if(dp[root][k]>=inf||dp[v][j-k]>=inf)   continue;
                                temp=min(temp,dp[root][k]+dp[v][j-k]);
                        }
                        dp[root][j]=temp;
                }
        }
}
int main()
{
        while(scanf("%d%d",&n,&m)!=EOF)
        {
                init();
                memset(vis,0,sizeof(vis));
                memset(sum,0,sizeof(sum));
                for(int i=0;i<=n;i++)
                        for(int j=0;j<=m;j++)
                                dp[i][j]=inf;
                for(int i=1;i<n;i++)
                {
                        int u,v;
                        scanf("%d%d",&u,&v);
                        addedge(u,v);
                        addedge(v,u);
                        vis[v]=1;
                }
                int root;
                for(int i=1;i<=n;i++)
                        if(!vis[i])
                                root=i;
                dfs(root,-1);
                int ans=dp[root][m];
                for(int i=1;i<=n;i++)
                {
                        ans=min(ans,dp[i][m]+1);
                }
                printf("%d\n",ans);
        }
        return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值