生产者消费者模型当中有两大类重要的角色,一个是生产者(负责造数据的任务),另一个是消费者(接收造出来的数据进行进一步的操作)。
神马是生产者和消费者?
生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据
之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞
队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。
这就像,在餐厅,厨师做好菜,不需要直接和客户交流,而是交给前台,而客户去饭菜也不
需要不找厨师,直接去前台领取即可。
为什么要使用生产者消费者模型?
在并发编程中,如果生产者处理速度很快,而消费者处理速度比较慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个等待的问题,就引入了生产者与消费者模型。让它们之间可以不停的生产和消费。
实现生产者消费者模型三要素:
1、生产者
2、消费者
3、队列(或其他的容哭器,但队列不用考虑锁的问题)
什么时候用这个模型?
程序中出现明显的两类任务,一类任务是负责生产,另外一类任务是负责处理生产的数据的(如爬虫)
用该模型有个蛇好处?
1、实现了生产者与消费者的解耦和
2、平衡了生产力与消费力,就是生产者一直不停的生产,消费者可以不停的消费,因为二者不再是直接沟通的,而是跟队列沟通的。
来简单的写一个线程的生产者消费者模型:
# 导入time模块
import time
# 导入线程模块
from threading import Thread
# 导入队列模块
from queue import Queue
# 创建队列
q = Queue(10) # 厨师初始生产的包子
# 定义生产者
def producer(name):
count = 1 # 给生产出来的包子计数
# 一直生产包子
while True:
q.join() # join在这里会等待,直至task_done()发送信号后,再放行
q.put(count)
print('生产者%s正在生产第%d个包子'%(name,count))
count+=1
time.sleep(2)
# 定义消费者
def customer(name):
count = 1 # 给消费者吃了的包子计数
# 一直获取包子
while True:
bao_zi = q.get() #获取厨师队列中的包子
print('消费者%s正在吃第%d个包子'%(name,bao_zi))
count +=1
q.task_done() # put和get一次之后,取完包子后给join发送信号
time.sleep(1)
if __name__ == '__main__':
# 设置t1线程
t1 = Thread(target=producer,args=('刘大厨',))
# 设置t2线程
t2 = Thread(target=customer,args=('翠花',))
# 启动线程
t1.start()
t2.start()
关键的两个方法
task_done():消费者用此方法发出信息,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将会导致ValueError异常。
join():生产者调用此方法进行阻塞,直到队列中所有的项目都被处理了。