黄龙溪古镇值得游玩吗?黄龙溪必吃三大特色一览

       5000年的华夏文明散落在祖国的每一个角落,哪怕是一块地砖也在诉说着他曾经的辉煌,对于黄龙溪古镇这座拥有着1700多年历史的十大水乡古镇之一来说,充满了浓郁的文化色彩,吸引了众多游客前往。

黄龙溪古镇值得游玩吗?黄龙溪必吃三大特色一览告诉你怎么吃更尽兴。深厚的文化底蕴是游客选择黄龙溪古镇的首要条件,这里有着古街古树,古庙和古水陆码头以及古朴的民风,每一种都是珍贵的历史文化遗产。

黄龙溪地处于成都平原的南部,小镇内有一湖两河,三寺七街九巷子,组成了一副非常美丽的自然画卷,同时这里也是中国明间艺术之乡,有着非常丰富的民俗文化表演,大家旅游的时候能够看到烧火龙,彩龙表演、南狮表演、漂河灯等传统活动,也有焰火晚会,露天电影,音乐晚会等现代娱乐方式。是一个非常值得旅游的地方。

      黄龙溪必吃的三大特色包括:一根面,是这里的传统美食,拉面师傅现场拉动面条将一整块面拉成一根面,逢年过节的时候吃上一碗,寓意全年一顺百顺。石磨豆花,是每家都会做的特色小吃,属于当地的特色小吃。黄辣丁以鱼肉为主材,烹饪出的一道特色美食,肉质鲜嫩的鱼与汤底融合,带来极致的美食体验。

### 使用Java8实现基于基尼系数的决策树算法 为了实现基于基尼系数的决策树算法并用于分析黄龙溪火龙舞的文化传承意志,可以按照以下方法构建模型。以下是详细的说明: #### 1. 数据准备 在分析之前,需要收集关于黄龙溪火龙舞的相关数据集。这些数据可能包括但不限于以下几个维度: - 年龄分布:参与者的年龄范围。 - 性别比例:男性与女性的比例。 - 地域特征:参与者来自哪些地区。 - 参与意愿:不同人群对火龙舞的兴趣程度。 假设已有一个结构化的数据表来表示上述信息,则可以通过计算基尼指数来进行分类[^3]。 #### 2. 基尼系数定义 基尼系数是一种衡量不纯度的方法,在二元分类问题中尤其重要。其公式如下所示: \[ Gini(D) = 1 - \sum_{k=1}^{K}(p_k)^2 \] 其中 \( p_k \) 表示类别 k 的概率。如果某个节点完全由单一类别的样本组成,则该节点的基尼指数为零;反之则接近于最大值 0.5 (当两类的概率相等时)[^1]。 #### 3. 决策树构建逻辑 利用 Java8 中强大的 Stream API 来简化集合操作过程,从而更高效地完成分裂条件的选择以及子节点创建等工作流设计。具体步骤如下: ##### a. 定义基础实体类 首先我们需要定义一些基本的数据对象用来存储训练样本及其属性值。 ```java public class Sample { private String featureValue; private boolean label; public Sample(String featureValue, boolean label){ this.featureValue = featureValue; this.label = label; } // Getters & Setters omitted for brevity. } ``` ##### b. 计算基尼增益函数 编写一个通用方法用以评估每种划分方式所带来的信息熵减少量即所谓的“基尼增益”。 ```java import java.util.*; import java.util.stream.Collectors; public class DecisionTreeUtil { /** * Calculate gini index given list of samples. */ public static double calculateGiniIndex(List<Sample> dataset){ long totalSamples = dataset.size(); if(totalSamples == 0)return 0d; Map<Boolean, Long> countByLabel = dataset.stream().collect(Collectors.groupingBy(Sample::getLabel, Collectors.counting())); double probTrue = Optional.ofNullable(countByLabel.get(true)).orElse(0L)/(double)totalSamples; double probFalse = Optional.ofNullable(countByLabel.get(false)).orElse(0L)/(double)totalSamples; return 1-(Math.pow(probTrue,2)+ Math.pow(probFalse,2)); } /** * Find best split based on maximum gain in gini impurity reduction. */ public static SplitResult findBestSplit(List<Sample> dataSets,List<String> features){ ... } } class SplitResult{ String selectedFeature; List<List<Sample>> partitions; } ``` 以上代码片段展示了如何通过 `calculateGiniIndex` 方法计算整个数据集或者某一特定分组内的基尼指数,并进一步寻找最佳分割点以便最大化降低整体不确定性水平[^2]。 #### 4. 构建完整的决策树 最后一步就是递归调用上面提到的功能模块直到满足停止准则为止(比如达到预设的最大深度限制或是当前叶结点仅含有一种类型的实例)。最终得到一棵能够反映输入变量间关系模式的预测模型。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值