动态规划——背包问题(一)

一、01背包问题

问题:
有N件物品和一个容量为V的背包,第i件物品的费用(即体积,下同)是w[i],价值是c[i]。求解哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路:
这是最基础的背包问题,特点是每种物品仅有一件,可以选择放或不放。
用于问题定义状态:即f[i][v]表示前i件物品(部分或全部)恰放入一个容量为v的背包可以获得最大价值,则其状态转移方程是:f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]}。
这个方程非常重要,基本上所有跟背包相关的问题的方程都是从它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放,第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-w[i]的背包中”,此时能获得的最大价值就是f[i-1][v-w[i]]再加上通过放入第i件物品获得的价值c[i]。
代码如下:

#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
int w[1001],f[201][201],c[1001],n,m;

int main(){
    scanf("%d%d",&m,&n);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&w[i],&c[i]);
    }
    for(int i=1;i<=n;i++){
        for(int v=m;v>0;v--){
            if(w[i]<=v){
                f[i][v]=max(f[i-1][v],f[i-1][v-w[i]]+c[i]);
            }
            else{
                f[i][v]=f[i-1][v];
            }
        }
    }
    printf("%d",f[n][m]);
    return 0;
}

如何优化:
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来的二位数组f[i][0..v]的所有值。那么如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-w[i]]两个子问题递推而来的,能否保证在推f[i][v]时(也即在第i次主循环中推出f[v]时)能够得到f[i-1][v]和f[i-1][v-w[i]]的值呢?事实上,这要求在每次主循环中找到我们以v=V..0的逆序推f[v],这样才能保证推f[v]时f[v-w[i]]保存的是状态f[i-1][v-w[i]]的值。
伪代码如下:

for i=1..N;
  for v=V..0;
    f[v]=max{f[v],f[v-w[i]]+c[i]};

其中f[v]=max{f[v],f[v-w[i]]+c[i]}相当于转移方程f[i][v]=max(f[i-1][v],f[i-1][v-w[i]]+c[i])因为现在的f[v-w[i]]就相当于原来的f[i-1][v-w[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-w[i]]推知,与本题意不符,但它却是另一个重要的完全背包最简洁的解决方案,故学习只用一维数组解01背包问题是十分必要的。
优化代码:

#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
int w[1001],c[1001],f[1001],n,m;

int main(){
    scanf("%d%d",&m,&n);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&w[i],&c[i]);
    }
    for(int i=1;i<=n;i++){
        for(int v=m;v>=w[i];v--){
            if(f[v-w[i]]+c[i]>f[v]){
                f[v]=f[v-w[i]]+c[i];
            }
        }
    }
    printf("%d",f[m]);
    return  0;
}

二、完全背包问题

问题:
有N件物品和一个容量为V的背包,每种物品都有无限件可用。第i件物品的费用是w[i]价值是c[i]。求解哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.
基本思路:
这个问题非常类似于01背包问题,所不同的是每种物品都无限件,也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件,取1件,取2件……很多种。如果仍然按照理解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*w[i]]+k*c[i]|0<=k*w[i]<=v}
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其他类型的背包问题。
代码如下:

#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m,w[1001],c[1001],f[201][201];

int main(){
    scanf("%d%d",&m,&n);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&w[i],&c[i]);
    }
    for(int i=1;i<=n;i++){
        for(int v=1;v<=m;v++){
            if(v<w[i]){
                f[i][v]=f[i-1][v];
            }
            else{
                if(f[i-1][v]>f[i][v-w[i]]+c[i]){
                    f[i][v]=f[i-1][v];
                }
                else{
                    f[i][v]=f[i][v-w[i]]+c[i];
                }
            }
        }
    }
    printf("%d",f[n][m]);
    return 0;
}

如何优化:
伪代码:

for i=1..N;
  for v=0..V;
    f[v]=max{f[v],f[v-w[i]]+c[i]};

这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-w[i]]+c[i]},将这个方程用一维数组实现,便得到了上面的伪代码。
优化代码:

#include<iostream>
#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
int w[1001],c[1001],n,m,f[1001];

int main(){
    scanf("%d%d",&m,&n);
    for(int i=1;i<=n;i++){
        scanf("%d%d",&w[i],&c[i]);
    } 
    for(int i=1;i<=n;i++){
        for(int v=w[i];v<=m;v++){
            if(f[v-w[i]]+c[i]>f[v]){
                f[v]=f[v-w[i]]+c[i];
            }
        }
    }
    printf("%d",f[m]);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值