推荐系统及算法实践
文章平均质量分 93
推荐系统及算法实践
周壮
天不言自高,地不言自厚,人不言自能,水不言自流
展开
-
00 如何根据规律在变化中求发展?
你好,我是周大壮。目前,我已在搜索推荐等算法技术领域从事研发近 10 年,做过诸多流量分发领域的算法技术工作。如今任公司同城的算法架构师、技术委员会人工智能分会委员、公司本地服务事业群算法策略部负责人,我主要负责公司集团四大业务板块之一本地服务事业群算法能力基础建设(包括本地服务业务中搜索推荐推送、知识图谱、信息爬取、标签等系统)。在工作期间,我不仅带领了 20+ 团队从 0 到 N 构建了一套推荐系统工程和算法体系,还支持了公司同城本地服务、到家精选品牌业务、到店及社区产品的流量分发和营销业务。原创 2024-07-03 19:41:49 · 702 阅读 · 0 评论 -
01 数据采集层 流量分发第一步规范采集海量数据
学到这里,你已经了解了流量分发的四个阶段和数据采集阶段的完整流程啦,棒棒哒~《道德经》中说“重为轻根,静为躁君。是以圣人终日行不离辎重。”在流量分发体系中,数据就是这个系统的辎重,而数据驱动思维方式是每个推荐算法工程师必备的思维方式。根据这种思维方式,我们可以快速获取产品改进的分析流程:首先,确定个人分析目标,从数据规模、数据分布等角度介入发现问题;其次,确定需要分析的数据,将数据细化到数据分析指标,预估数据的有效阈值;然后,寻找并获取评估数据的渠道,得到自己想要的原始数据;原创 2024-07-03 22:23:25 · 2009 阅读 · 0 评论 -
02 数据加工层 如何搭建用户与内容的标准规范体系
你好,我是周大壮。01 讲我们提到了个性化流量分发体系的四个阶段,并着重讲解了数据采集阶段的内容。那么,这一讲我们主要围绕数据加工阶段的内容进行详细讲解。在课程开始之前,我们先举一个场景进行说明。近年来,互联网上充斥着纷繁芜杂的信息,比如文字、图像、声音、视频等,这些信息都是非结构化,而用户在浏览这些信息时会同时做出各种各样的行为,因此,如果想要实现信息与用户之间的高效连接,我们必须建立标准的用户行为规范和内容规范,这也是在数据加工阶段的核心工作内容。原创 2024-07-04 08:05:04 · 871 阅读 · 0 评论 -
03 数据加工层 如何精准匹配用户画像与物品画像?
学到这里,恭喜你已经了解了用户画像和物品画像搭建的全过程,04 讲我们将开始了解推荐系统的评价标准。对于用户画像和物品画像构建的内容,如果你还有不同的见解,欢迎在留言区与我分享个人观点。另外,如果本节课内容对你有启发和帮助,欢迎分享给更多的朋友哦~原创 2024-07-10 07:46:03 · 799 阅读 · 0 评论 -
04 效用评测层 显性指标+标准方法 对推荐效果定量评测
道德经中说:“孰知其极,其无正也”。推荐系统是一个复杂系统,在实际业务中,如何选择评测指标和评测方法,需要我们根据实际业务场景来定。对于推荐算法评测方法,如果你还有不同的见解?欢迎在留言区进行互动、交流。05 讲我将带你进入推荐系统算法的世界。原创 2024-07-10 07:57:55 · 888 阅读 · 0 评论 -
05 以物品与用户为基础个性化推荐算法的四大策略
易经》:“九二:见龙在田,利见大人”。九二是指阳爻在卦中处于第二位,见龙指龙出现在地面上,开始崭露头角,但是仍须努力,应处于安于偏下的位置。本节是模块二第一节,模块二讲解传统机器学习推荐算法,这部分是作为一名推荐算法工程师的基础,我们将一起学习和掌握传统经典推荐算法和传统推荐算法发展脉络。原创 2024-07-12 08:03:46 · 995 阅读 · 0 评论 -
06 人以群分 基于邻域的协同过滤算法
推荐算法本质上是一一种信息处理方法,它将用户信息和物品信息处理后,最终输出了推荐结果。因为 05 讲中基于热门推荐、基于内容推荐、基于关联规则推荐等方法比较粗放,所以推荐结果往往不够精准。如果我们想打造一个千人千面、真正符合用户个性化推荐需求的推荐系统,就需要使用到更为复杂的运算逻辑——推荐算法。原创 2024-07-13 18:17:39 · 845 阅读 · 0 评论 -
07 物以类聚 基于特征的七种算法模型
你好,我是大壮。在 06 讲中,我们介绍了协同过滤(CF)算法,它主要通过用户行为构建用户物品共现矩阵,然后通过 CF 算法预测结果实现个性化推荐。其实,除了利用用户行为特征之外,我们还可以利用用户、物品自身特征等辅助信息进行结果预测。基于物品特征的推荐问题,我们一般通过回归模型进行实现。首先,回归模型会通过算法预测出一个介于 0~1 之间的连续值,这个值代表一种可能性,然后推荐系统将得到的可能性通过排序的方式推荐给用户,最终实现个性化推荐。因此,这一讲我们介绍一下基于物品特征的推荐算法的演进之路。原创 2024-07-15 22:25:39 · 1272 阅读 · 0 评论 -
08 模型演化根本 深度学习推荐算法的五大范式
易经》“九三:君于终日乾乾;夕惕若,厉无咎”。九三是指阳爻在卦中处于第三位,已经到达中位,惕龙指这个阶段逐渐理性,德才已经显现,会引人注目;但要反思自己的不足,努力不懈,日夜警惕戒备,即使处于危境,也可无咎。模块三我们将讲解深度学习推荐算法,这部分近年来发展迅速,我们将学习和掌握最有影响力的深度学习推荐算法及其发展脉络。上一课时《07 | 物以类聚,基于特征的七种算法模型》,我们讲到传统机器学习组合 GDBT+LR 模型开启了特征工程化和端到端学习的开端,而深度学习的发展将继续延续了这一趋势。原创 2024-07-16 21:18:52 · 739 阅读 · 0 评论 -
09 深度推荐模型演化中的“平衡与不平衡“规律
你好,我是大壮。08 讲我们介绍了深度推荐算法中的范式方法,并简单讲解了组合范式推荐方法,其中还提到了多层感知器(MLP)。因此,这一讲我们就以 MLP 组件为基础,讲解深度学习范式的其他组合推荐方法。MLP 是一种非常简单、原汁原味的神经网络(DNN),它能够逼近任何可测函数并得到任何期望的精确度,简洁又有效。在推荐领域,MLP 由于能有效地建模高阶交互特征,所以成了深度推荐算法中最通用的组件。下面我们看看在推荐系统中,如何使用 MLP 进行隐向量表征学习和推荐模型建立。原创 2024-07-16 21:56:58 · 804 阅读 · 0 评论 -
10 深度推荐模型演化中的进阶路径
你好,我是大师兄。上一课时,我们介绍了深度推荐算法的一些演化规律,这一讲我们仍然以 MLP 基础组件为例。如下所示,我将按照以下七步及其深度学习模型,介绍深度推荐算法的演化规律。通用范式框架:Embedding + MLP仅对 Embedding 部分改造:FNN 模型借用 ResNet:Deep Crossing 模型结合注意力机制:注意力因子分解机(AFM)模型使用注意力机制:深度兴趣网络(DIN)模型添加兴趣提取层与兴趣进化层:深度兴趣进化网络(DIEN)模型。原创 2024-07-21 09:52:53 · 1140 阅读 · 0 评论 -
11 深度推荐模型演化中的“范式替换“灵活组合
上一课时,我们介绍了 DIEN 模型添加了 RNN中 的 GRU,使模型获得了对序列数据的建模能在新的演化模型中,根据场景和数据的不同,替换和添加不同的范式组件已经成为一种趋势。关于基础组件,“08|模型演化根本:深度学习推荐算法的五大范式组件”中我们提到了多层感知器(MLP)、自编码器(AE)、受限玻尔兹曼机(RBM)、卷积神经网络(CNN)、循环神经网络(RNN)等。原创 2024-07-21 10:04:44 · 684 阅读 · 0 评论 -
12 用户行为关联与推荐:多目标与多任务学习
《易经》“九四:或跃在渊,无咎”。九四是指阳爻在卦中处于第四位,已经超越中位,跃龙指龙要么跃而上,要么退于渊中,见机行事即可无咎,重点在于把握时机。因此,在学习本模块时,我们需要因时因地地结合当前业务场景,多发挥自己的主观能动性。接下来,这一讲我们着重聊聊推荐领域的经典问题——多任务学习,并不断推演这个深度推荐模型的演化方向。原创 2024-07-24 08:14:30 · 1082 阅读 · 0 评论 -
13 用户兴趣探索与开发 深度学习与强化学习
Q 学习(Q-Learning)既不是模型,也不是面向某种目标的算法。它是使用 Q 表(Q-Table)记录不同状态,并在这个状态下采取某些行为的预期收益。这里我们需要重点讲讲什么是 Q 表,及其如何记录不同转状态,Q 表如下图所示:在 S0 状态下,如果采取 A0 动作(或者选择 A0 老虎机),那么预期收益是 0.25。注意:不一定会有 0.25 的收益,因为整个 Q 表的参数会在不断尝试中进行更新,所以此时的值只是选择下一步动作的基础。原创 2024-07-24 13:04:26 · 1068 阅读 · 0 评论 -
14 新用户与新物品涌入 冷启动难题破解之道
上一课时,我们讲解了一些解决用户兴趣探索与开发问题的模型及方法,在对用户进行服务时,我们总是需要在当前收益与长远收益之间做权衡。而若要扩大收益,我们就需要做大供给侧和需求侧。在业内平台中,用户和物品的变化是一个动态发展的过程(比如用户的激活和流失、物品的上架和下架)。这就意味着,供给侧和需求侧在整体上是不断变化的,所以互联网产品的常态是不断有新用户和新物品加入。新用户和新物品的冷启动也会伴随整个产品生命周期。原创 2024-07-26 19:01:29 · 897 阅读 · 0 评论 -
15 本地服务业务中的推荐系统实战——工程篇
易经》“九五:飞龙在天,利见大人”。九五是指阳爻在卦中处于第五位,已接近极限。飞龙指龙飞在天上,居高临下,大展鸿图。在前面 4 个模块中,你已经掌握推荐系统的核心知识体系了。本模块主要是介绍推荐算法工程化的落地方案,实践性很强,助你灵活运用已学知识来解决实际问题。在这一讲,我们通过介绍同城本地服务业务的背景和特点,来讲述推荐系统落地的工程化方案。本地服务事业群,旧称“大黄页”“黄老大”,在集团内是既古老又年轻的业务线。古老是因为自从成立以来,它就是一个以提供本地信息服务的分类信息网站;原创 2024-07-27 10:09:12 · 1241 阅读 · 0 评论 -
16 本地服务业务中的推荐系统实战——算法篇
你好,我是大师兄。15 讲我们讲述了同城本地服务的各个业务背景和特点,以及推荐系统工程架构落地和演化过程。这一讲我们主要讲述同城本地服务业务与推荐算法模型的关系和演化过程。在课程开始前,我们先回顾一下同城本地服务主站业务特点以及推荐场景位所关注的指标。主站业务是通用的业务形式,由 APP/PC/M 等端口进入本地服务落地页,以流量生意为主。(开环业务,目前产品形态正在从开环向半闭环演进)。推荐场景:列表页、详情页、落地页等;推荐内容:帖子、商家、店铺、商品、标签等;原创 2024-07-27 10:59:59 · 1248 阅读 · 0 评论 -
17 推荐系统方案中那些不得不知的坑
你好,我是大壮。《易经》中说:“上九:亢龙有悔”。上九是指阳爻在卦中处于最高位,亢龙是指飞向尽头的龙,穷尽至极力终有尽时,力尽则悔,悔不可及。在前面的 18 讲我们已经讨论了整个推荐算法的演化过程,并经历过实践检验,貌似已经大功告成了。那么,如果我们沿着这条路走下去就一定能一帆风顺么?答案:当然会有磕磕绊绊。下面我们就着重讲讲推荐系统实际方案中的那些坑,让你少走弯路。原创 2024-07-27 16:31:19 · 313 阅读 · 0 评论