SGU 102 虽然代码比较多,不过还是挺高效的~

本文深入探讨了程序开发中的核心算法与技术,包括数据结构、算法、版本控制、项目管理等多个方面,为开发者提供全面的技术指导。
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;

#ifdef _WIN32
#define i64 __int64
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
#define i64 long long
#define out64 "%lld\n"
#define in64 "%lld"
#endif

#define FOR(i,a,b)      for( int i = (a) ; i <= (b) ; i ++)
#define FF(i,a)         for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a)        for( int i = (a)-1 ; i >= 0 ; i --)
#define S64(a)          scanf(in64,&a)
#define SS(a)           scanf("%d",&a)
#define LL(a)           ((a)<<1)
#define RR(a)           (((a)<<1)+1)
#define SZ(a)           ((int)a.size())
#define PP(n,m,a)       puts("---");FF(i,n){FF(j,m)cout << a[i][j] << ' ';puts("");}
#define pb              push_back
#define CL(Q)           while(!Q.empty())Q.pop()
#define MM(name,what)   memset(name,what,sizeof(name))
#define read            freopen("in.txt","r",stdin)
#define write           freopen("out.txt","w",stdout)

const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-10;
const double pi = acos(-1.0);
const int maxn = 10011;

int gcd(int a, int b)
{
    if (!a || !b)
    {
        return max(a, b);
    }
    int t;
    while (t = a % b)
    {
        a = b;
        b = t;
    }
    return b;
};

bool notp[maxn];
vector<int>v;
vector<int>p;
bool a[maxn];
int n;

bool isp(int x)
{
    int tx = sqrt(x);
    for(int i=0;i<p.size();i++)
    {
        if(x%p[i]==0)
        {
            return false;
        }
        else if(p[i] > tx)
        {
            return true;
        }
    }
    return true;
}

bool yes(int x)
{
    if(a[x] == true)
    {
        return false;
    }
    for(int i=0;i<v.size();i++)
    {
        if(v[i] <= x)
        {
            if( x%v[i] == 0)
            {
                return false;
            }
        }
        else
        {
            return true;
        }
    }
    return true;
}

int main()
{
    p.clear();
    MM(notp,false);
    notp[1]=true;
    notp[2]=false;
    p.pb(2);
    for(int i=3;i<maxn;i++)
    {
        if(isp(i))
        {
            notp[i] = false;
            p.push_back(i);
        }
        else
        {
            notp[i] = true;
        }
    }
    int temp;
    while(SS(n)!=EOF)
    {
        if(n==1)
        {
            printf("1\n");
            continue;
        }
        if(!notp[n])
        {
            printf("%d\n",n-1);
            continue;
        }
        else
        {
            v.clear();
            MM(a,false);
            temp = n;
            for(int i=0;i<p.size();i++)
            {
                if(p[i] <= temp)
                {
                    if(temp % p[i] == 0)
                    {
                        v.push_back(p[i]);
                        a[p[i]]=true;
                        temp/=p[i];
                    }
                }
                else
                {
                    break;
                }
            }
    /*        for(int i=0;i<v.size();i++)
            {
                cout<<v[i]<<" ";
            }
            cout<<endl;       */
            int ans = 0;
            for(int i=1;i<=n-1;i++)
            {
                if(yes(i))
                {
                    ans++;
                }
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}

内容概要:本文提出了一种基于非对称纳什谈判的微网电能共享运行优化策略,旨在解决个微电网系统间的能量协调与利益分配问题。通过构建非对称纳什谈判模型,充分考虑各微网在能源供给、负荷需求及可再生能源出力等方面的差异性,实现公平且高效的电能共享机制。该策略以各微网成本最小化为目标,在满足功率平衡与设备运行约束的前提下,利用博弈论方法达成主体间的协商均衡,提升整体能源利用效率与经济性。文中给出了详细的数学建模过程,并通过Matlab代基于非对称纳什谈判的微网电能共享运行优化策略(Matlab代码实现)码实现仿真验证,展示了所提方法在降低运行成本、促进可再生能源消纳和增强系统自治能力方面的有效性。; 适合人群:具备一定电力系统基础知识和博弈论背景,熟悉Matlab编程,从事微电网、综合能源系统或分布式能源研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究微网系统中电能共享与协同优化的建模范式;②掌握非对称纳什谈判在能源交易与利益分配中的建模与求解方法;③实现基于博弈论的主体能源管理系统设计与仿真; 阅读建议:建议结合Matlab代码深入理解模型构建与算法实现细节,重点关注目标函数设定、约束条件处理及博弈均衡求解过程,可进一步拓展至考虑不确定性或通信延迟的实际应用场景。
内容概要:本文是一篇关于激变变星(CV)光谱分析的实验报告,旨在通过“PHOENIX伴星+Koester白矮星+吸积盘幂律+加性项式+可选消光”的联合拟合模型,对SDSS光谱数据进行连续谱分解,并提取发射线主导的残差光谱。实验流程包括数据预处理、伴星模板匹配、白矮星与吸积盘成分拟合、加性项式校正、加权最小二乘法全局拟合,以及构建减法、比值和高通滤波残差光谱,最终在残差上测量Balmer和He I/II等发射线的通量、FWHM、速度偏移和信噪比等参数。后续计划包括优化现有代码、批量化处理SDSS与LAMOST数据,并用于训练diffusion与WGAN模型,结合Cloudy模拟光谱开展模板匹配。; 适合人群:具备天文光谱数据处理基础,熟悉Python编程与基本拟合算法的天体物理研究人员或高年级本科生、研究生;有恒星光谱建模或机器学习应用经验者更佳; 使用场景及目标:①实现CV系统成分连续谱的精确分解;②提取纯净发射线光谱用于物理参数反演;③为后续深度学习模型(如diffusion、WGAN)提供高质量训练样本与标签数据; 阅读建议:理解各成分模板的选择依据与拟合策略是关键,建议结合代码cv_continuum_joint_fit_v6_residuals_lines.py逐步调试,重点关注红端窗口拟合、加权最小二乘实现与残差构造方式,并注意异常值(如宇宙射线)对拟合的影响及处理技巧。
内容概要:本文围绕基于FFT算法的MATLAB傅里叶级数3D可视化研究展开,通过Matlab代码实现信号的频域分析与三维图形展示,帮助理解傅里叶变换在信号处理中的应用。文中详细介绍了快速傅里叶变换(FFT)的基本原理及其在周期信号分解中的实现方法,并利用MATLAB强大的绘图功能完成时域到频域的转换及基于FFT算法的MTALAB傅里叶级数3D可视化研究(Matlab代码实现)3D可视化呈现,便于直观分析信号成分与频率特性。同时,文档还列举了个相关科研方向的Matlab/Simulink仿真实例,涵盖信号处理、故障诊断、优化算法、电力系统等个领域,展示了MATLAB在工程仿真与科学研究中的广泛应用。; 适合人群:具备一定信号处理和MATLAB编程基础,从事电气工程、自动化、通信、机械故障诊断等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握FFT算法在实际信号分析中的应用方法;②学习如何利用MATLAB实现傅里叶级数的三维可视化;③为开展信号处理、频谱分析、故障诊断等科研工作提供代码参考和技术支持;④拓展MATLAB在领域仿真中的应用思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,逐步调试并理解每一步的实现逻辑,同时可参考文档末尾列出的其他研究案例,拓展研究视野,提升综合仿真能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值