好吧,说说方法
先解一个同余方程求出 一个解 x10 , x20
由于 a*b - b*a == 0;
那么可以求出它的整数解系,
x1 = x10 + K*b;
x2 = x20 - K*a;
我们可以证明在这其中不会存在其他的解,即求出了所有的解
然后思考一下,怎样使操作的次数最少,
可以发现若 x1 > 0 && x2 > 0 的话操作的次数就是 Max(x1,x2).
这样的话问题就被简化了,
问题就变成通过 +b 和 -a 的线性变换使 x1 尽量的接近 x2
寻找到解系中最接近的 x1 和 x2,问题也就解决了
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;
#ifdef _WIN32
#define i64 __int64
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
#define i64 long long
#define out64 "%lld\n"
#define in64 "%lld"
#endif
#define FOR(i,a,b) for( int i = (a) ; i <= (b) ; i ++)
#define FF(i,a) for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a) for( int i = (a)-1 ; i >= 0 ; i --)
#define S64(a) scanf(in64,&a)
#define SS(a) scanf("%d",&a)
#define LL(a) ((a)<<1)
#define RR(a) (((a)<<1)+1)
#define SZ(a) ((int)a.size())
#define PP(n,m,a) puts("---");FF(i,n){FF(j,m)cout << a[i][j] << ' ';puts("");}
#define pb push_back
#define CL(Q) while(!Q.empty())Q.pop()
#define MM(name,what) memset(name,what,sizeof(name))
#define read freopen("in.txt","r",stdin)
#define write freopen("out.txt","w",stdout)
const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-10;
const double pi = acos(-1.0);
i64 gcd(i64 _a, i64 _b)
{
if (!_a || !_b)
{
return max(_a, _b);
}
i64 _t;
while (_t = _a % _b)
{
_a = _b;
_b = _t;
}
return _b;
};
i64 ext_gcd (i64 _a, i64 _b, i64 &_x, i64 &_y)
{
if (!_b)
{
_x = 1;
_y = 0;
return _a;
}
i64 _d = ext_gcd (_b, _a % _b, _x, _y);
i64 _t = _x;
_x = _y;
_y = _t - _a / _b * _y;
return _d;
}
i64 invmod (i64 _a, i64 _p)
{
i64 _ans, _y;
ext_gcd (_a, _p, _ans, _y);
_ans < 0 ? _ans += _p : 0;
return _ans;
}
i64 x,y,a,b;
i64 ans;
i64 get(i64 x1,i64 x2)
{
ans = inf64;
i64 ca = x2-x1;
if(ca<0)
{
ca = -ca;
}
i64 temp = ca/(a+b);
i64 tx1,tx2;
if( x1 < x2)
{
tx1 = x1 + temp*b;
tx2 = x2 - temp*a;
if(tx1 > 0)
{
ans = tx2;
}
else
{
ans = -tx1 + tx2;
}
tx1 += b;
tx2 -= a;
if(tx1 > 0 && tx2>0)
{
ans = min(ans,max(tx1,tx2));
}
else
{
ans = min(ans,tx1 - tx2);
}
}
else
{
tx1 = x1 - temp*b;
tx2 = x2 + temp*a;
if(tx2 > 0)
{
ans = tx1;
}
else
{
ans = tx1 - tx2;
}
tx1 -= b;
tx2 += a;
if(tx1>0 && tx2>0)
{
ans = min(ans,max(tx1,tx2));
}
else
{
ans = min(ans,-tx1 + tx2);
}
}
return ans;
}
int T;
int main()
{
cin>>T;
for(int tt=1;tt<=T;tt++)
{
cin>>x>>y>>a>>b;
i64 gab = gcd(a,b);
if(a>b)
{
swap(a,b);
}
a/=gab;
b/=gab;
if(x==y)
{
cout<<"0"<<endl;
continue;
}
if(x>y)
{
swap(x,y);
}
i64 txy = y - x;
if(txy % gab != 0)
{
cout<<"-1"<<endl;
continue;
}
txy/=gab;
i64 x1,x2;
x1 = invmod(a,b);
x1 *= txy;
x1 %= b;
x2 = txy - a*x1;
// assert( x2%b == 0 )
x2 /= b;
cout<<get(x1,x2)<<endl;
}
return 0;
}