题目
有 NN 组物品和一个容量是 VV 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vijvij,价值是 wijwij,其中 ii 是组号,jj 是组内编号。求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,VN,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 NN 组数据:
- 每组数据第一行有一个整数 SiSi,表示第 ii 个物品组的物品数量;
- 每组数据接下来有 SiSi 行,每行有两个整数 vij,wijvij,wij,用空格隔开,分别表示第 ii 个物品组的第 jj 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000<N,V≤100
0<Si≤1000<Si≤100
0<vij,wij≤1000<vij,wij≤100输入样例
3 5 2 1 2 2 4 1 3 4 1 4 5
输出样例:
8
AC代码🌝
#include<bits/stdc++.h>
using namespace std;
int f[110],v[110][110],w[110][110];
int n,m,s[110];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>s[i];
for(int j=1;j<=s[i];j++)
{
cin>>v[i][j]>>w[i][j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=m;j>=1;j--)
{
//for(int k=1;k<=s[i];k++) 两种写法都可以
for(int k=s[i];k>=1;k--)
{
if(j>=v[i][k])
f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
}
}
}
cout<<f[m]<<endl;
return 0;
}