本文转自:https://www.solarck.com/compile-tensorflow-gpu.html
我的电脑系统是基于 Archlinux 的 Manjaro,软件包更新的比较激进,很早就已经是 CUDA 9.2 了,而目前 Tensorflow 的官方编译版本对 CUDA 的支持还只停留在 CUDA 9.0。由于还不太会用 mxnet 和 pytorch,这时倍加想念 Keras 的简单。最近忙里偷闲研究了一下编译安装 Tensorflow,发现还挺简单的,把成功的喜悦分享出来,也供有需要的朋友参考。
查看系统信息
查看系统架构和发行版本
我用的 Manjaro x86_64
uname -m && cat /etc/*release
x86_64
Manjaro Linux
DISTRIB_ID=ManjaroLinux
DISTRIB_RELEASE=17.1.11
DISTRIB_CODENAME=Hakoila
DISTRIB_DESCRIPTION="Manjaro Linux"
Manjaro Linux
NAME="Manjaro Linux"
ID=manjaro
PRETTY_NAME="Manjaro Linux"
ANSI_COLOR="1;32"
HOME_URL="https://www.manjaro.org/"
SUPPORT_URL="https://www.manjaro.org/"
BUG_REPORT_URL="https://bugs.manjaro.org/"
查看 CPU 支持的指令集
嗯,这个貌似没什么用
cat /proc/cpuinfo |grep -m1 flags |cut -f2 -d":"
fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap intel_pt xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts
查看 Python 环境
我用 Anaconda 构建的虚拟环境,Python 3.6.6。这里要注意记住base environment
环境路径。
conda info
active environment : None
user config file : /home/kevin/.condarc
populated config files : /home/kevin/.condarc
conda version : 4.5.8
conda-build version : 3.12.0
python version : 3.6.6.final.0
base environment : /opt/Anaconda3 (writable)
channel URLs : https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64
https://mirrors.