hdu 5442 Favorite Donut 后缀数组

    很简单的一个后缀数组= = 单纯地写残了- - 长度翻倍末尾变无穷大前后各处理一遍就好,注意反着求的时候sa代表的位置也是反的(wa了n次)

    长度翻倍的时候我竟然能写成 strcat(str1,str1) T了n发还以为是板的问题- -我是猪么- -

    

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 40005;

int m = 27;
int sa[maxn], ran[maxn], h[maxn], wa[maxn], wb[maxn], c[maxn],n;
int id(char a){
    if(a=='{') return 26;
    return 25-(a-'a');
}
void build_sa(char *s){
    int *x=wa,*y=wb;
    memset(x,-1,sizeof(x));
    memset(y,-1,sizeof(y));
    memset(c,0,sizeof(c));
    for(int i=0;i<=n-1;i++) c[x[i]=id(s[i])]++;
    for(int i=1;i<m;i++) c[i]+=c[i-1];
    for(int i=n-1;i>=0;i--) sa[--c[x[i]]]=i;
    for(int k=1;k<=n;k<<=1){
        int p=0;
        for(int i=n-k;i<n;i++){
            y[p++]=i;
        }
        for(int i=0;i<n;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
        memset(c,0,sizeof(c));
        for(int i=0;i<=n-1;i++) c[x[y[i]]]++;
        for(int i=1;i<m;i++) c[i]+=c[i-1];
        for(int i=n-1;i>=0;i--) sa[--c[x[y[i]]]]=y[i];
        p=1;
        swap(x,y);
        x[sa[0]]=0;
        for(int i=1;i<n;i++){
            if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]) x[sa[i]]=p-1;
            else x[sa[i]]=p++;
        }
        if(p>=n) break;
        m=p;
    }
}
void getHeight(char *s){
    for(int i=0;i<n;i++) ran[sa[i]]=i;
    int k=0;
    for(int i=0;i<n;i++){
        if(ran[i]==0) continue;
        if(k) k--;
        int j=sa[ran[i]-1];
        while(i+k<=n-1&&j+k<=n-1&&s[i+k]==s[j+k]) k++;
        h[ran[i]]=k;
    }
}
char str1[maxn],str2[maxn],s1[maxn],s2[maxn];
int M;
int main(){
    int t;
    cin>>t;
    while(t--){
        scanf("%d%s",&M,str1);
        getchar();
        for(int i=0;i<M;i++) {
            str2[M-i-1]=str1[i];
        }
        str2[M]=str1[M]=0;
        n=M<<1;

        strcpy(s1,str1);
        strcpy(s2,str2);
        strcat(str2,s2);
        strcat(str1,s1);

        str1[n]='{';
        str2[n]='{';
        str1[++n]=0;
        str2[n]=0;

        m=27;
        build_sa(str1);
        getHeight(str1);

        int x1=sa[0];
        for(int i=1;i<n;i++) {
            if(h[i]<M) break;
            x1=min(x1,sa[i]);
        }

        m=27;
        build_sa(str2);
        getHeight(str2);

        int x2=-1;
        x2=sa[0];
        for(int i=1;i<n;i++) {
            if(h[i]<M) break;
            x2=max(x2,sa[i]%M);
        }
        int counter=0;
        for(int i=x1,j=x2,k=0;k<M;k++,i++,j++){
            if(str1[i] == str2[j]) continue;
            if(str1[i] < str2[j]) counter=1;
            else counter = -1;
            break;
        }

        x1++;x2=M-x2;
        if(counter==0&&x1<=x2||counter<0) printf("%d 0\n",x1);
        else printf("%d 1\n",x2);
    }
    return 0;
}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值