三角回文数:用户登录
问题描述
对于正整数 n, 如果存在正整数 k 使得 n=1+2+3+⋯+k=k(k+1)/2, 则 n 称为三角数。例如, 66066 是一个三角数, 因为 66066=1+2+3+⋯+363 。
如果一个整数从左到右读出所有数位上的数字, 与从右到左读出所有数位 上的数字是一样的, 则称这个数为回文数。例如, 66066 是一个回文数, 8778 也是一个回文数。
如果一个整数 n 既是三角数又是回文数, 我们称它为三角回文数。例如 66066 是三角回文数。
请问, 第一个大于 20220514 的三角回文数是多少?
答案提交
这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一 个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。
运行限制
- 最大运行时间:1s
- 最大运行内存: 256M
代码:
import java.util.Scanner;
// 1:无需package
// 2: 类名必须Main, 不可修改
public class 三角回文数 {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
for(int i=363;i<9000;i++){
long k=i*(i+1)/2;
if(k>20220514&&isHuiWen(k)){
System.out.println(k);
break;
}
}
scan.close();
}
public static boolean isHuiWen(long n){
String s=n+"";
int low=0;
int high=s.length()-1;
while (low<high){
if(s.charAt(low)!=s.charAt(high)){
return false;
}
low++;
high--;
}
return true;
}
}
123:用户登录
题目描述
小蓝发现了一个有趣的数列,这个数列的前几项如下:
1,1,2,1,2,3,1,2,3,4,⋯
小蓝发现,这个数列前 1 项是整数 1,接下来 2 项是整数 1 至 2,接下来 3 项是整数 1 至 3,接下来 4 项是整数 1 至 4,依次类推。
小蓝想知道,这个数列中,连续一段的和是多少。
输入描述
输入的第一行包含一个整数 T,表示询问的个数。
接下来 T 行,每行包含一组询问,其中第 ii 行包含两个整数 li 和 ri,表示询问数列中第 li 个数到第 ri 个数的和。
输出描述
输出 T 行,每行包含一个整数表示对应询问的答案。
输入输出样例
示例
输入
3
1 1
1 3
5 8
输出
1
4
8
代码:
import java.util.Scanner;
public class _123 {
static long[] a = new long[1414220];
static long[] b = new long[1414220];
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
long t = sc.nextLong();
for (int i = 1, k = 1; i < b.length; i++, k++) {
// 把样例分成一个一个的小块。
// 块号 1 2 3 4
// 样例: 1 12 123 1234
// 分块: 1 3 6 10
// 前缀和:1 4 10 20
a[i] = a[i - 1] + k;// 分块级
b[i] = b[i - 1] + a[i];// 前缀和
}
for (int i = 0; i < t; i++) {
long l = sc.nextLong();// 左
long r = sc.nextLong();// 右
long sum = fun(r) - fun(l - 1);// l-1是因为要包含l+1,比如5,8是都包含5和8的
System.out.println(sum);
}
}
public static long fun(long t) {
if (t == 0) {
return 0L;
}
int row = binarysearch(t);// 查找所在的行
long n = t - a[row];// 所查找的位置-行数的前缀和=row+1的前面的个数
return n * (n + 1) / 2 + b[row];// row+1行的和+前面的b的前缀和=t的和
}
public static int binarysearch(long t) {// 查找下标
int l = 0, r = 1414220;
while (l <= r) {
int mid = (l + r) / 2;
if (a[mid] < t) {
l = mid + 1;
} else {
r = mid - 1;
}
}
return l - 1;// 返回上一行
}
}
白头若是雪可替,世上何来苦心人