z小白的博客

驽马十驾,功在不舍

7. 声音数据增强

数据集和代码均已上传到Github中,欢迎大家下载使用。 Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial 如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q. 数据增强 这篇博客主要在音频信号处理领...

2019-05-24 10:17:52

阅读数 4

评论数 0

深度学习在音频信号处理领域中的进展(截止至2019年5月)

最近在arXiv上看到一篇关于深度学习在音频信号处理中的进展的文章,感觉写的不错,所以根据自己的理解和大家分享一下。如果有些地方博主理解的不对,或者解释不清,可以在下面评论,博主会一一回复。 论文链接:Deep Learning for Audio Signal Processing 摘要 ...

2019-05-21 01:13:42

阅读数 60

评论数 0

MUSIC算法推导及代码实现

简介 MUSIC (Multiple Signal Classification)算法,即多信号分类算法,由Schmidt等人于1979年提出。MUSIC算法是一种基于子空间分解的算法,它利用信号子空间和噪声子空间的正交性,构建空间谱函数,通过谱峰搜索,估计信号的参数。对于声源定位来说,需要估计...

2019-05-13 18:14:57

阅读数 111

评论数 0

深度学习中的卷积类型

简介 使用卷积操作的动机是让网络关注有意义的局部特征,同时因为其参数共享的机制,能够极大地降低参数量,提高计算效率。深度学习发展至今,衍生出了多种卷积类型。除了常规卷积外,还有转置卷积、空洞卷积、可分离卷积等。 常规卷积 以2D卷积为例,一个卷积操作通常包含以下几个参数: 5x5常规卷积...

2019-05-13 16:07:27

阅读数 6

评论数 0

Keras“冻结”层

“冻结”层指的是该层不参加网络训练,即该层的参数不会更新。“冻结”层主要有以下两个应用场景: 1)使用预训练模型进行fine-tune时,我们需要在预训练模型后面添加几层进行训练,而前面的预训练模型不进行参数更新; 2)当我们训练好模型,需要取出中间层的embedding再进行后续处理的时候,...

2019-04-09 11:00:54

阅读数 67

评论数 0

Keras自定义可训练参数

Keras自定义可训练参数是在自定义层中实现的,因此需要我们自己编写一个层来实现我们需要的功能。话不多说,直接上实例。 假设我们需要自定义一个可学习的权重矩阵来对某一层的数据进行转换,则可以通过下面代码实现: from keras import backend as K from keras...

2019-04-04 20:20:14

阅读数 235

评论数 0

算法的时间复杂度和空间复杂度计算

一、算法的时间复杂度定义     在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度。记作:T(n)=O(f(n...

2019-03-14 16:19:05

阅读数 50

评论数 0

Keras加载含有自定义层或函数的模型

当我们导入的模型含有自定义层或者自定义函数时,需要使用custom_objects来指定目标层或目标函数。 例如:我的一个模型含有自定义层“SincConv1D”,需要使用下面的代码导入: from keras.models import load_model model = load_mo...

2019-03-06 10:43:46

阅读数 730

评论数 0

SincNet: 一种可解释的卷积滤波器结构

简介 深度学习发展至今,在很多人工智能应用领域扮演者重要的角色。深度学习能够从数据中学习复杂而抽象的特征表示,但是这个充满意义的学习模式目前依然缺乏“可解释”性,也就是常说的“黑盒子”。例如,深度学习模型对对抗性实例(adversarial examples)极其敏感(模型表现不好),使得研究者...

2019-02-19 21:42:07

阅读数 285

评论数 0

浅析Batch Normalization

深度神经网络难训练 一个重要的原因就是深度神经网络涉及很多层的叠加,每一层的参数变化都会导致下一层输入数据分布的变化,随着层数的增加,高层输入数据分布变化会非常剧烈,这就使得高层需要不断适应低层的参数更新。为了训练好模型,我们需要谨慎初始化网络权重,调整学习率等。 原理分析 为了解决这个问题...

2019-01-07 20:46:14

阅读数 75

评论数 0

javac编译错误: 编码UTF8/GBK的不可映射字符

Linux下为UTF-8编码,javac编译gbk编码的java文件时,容易出现“错误: 编码UTF8的不可映射字符” 解决方法是添加encoding 参数:javac -encoding gbk WordCount.java   Windows下为GBK编码,javac编译utf-8编码的...

2018-12-29 17:51:40

阅读数 639

评论数 0

python爬取网页上的超链接

用bs4中的BeautifulSoup解析网页 from urllib.request import urlopen from bs4 import BeautifulSoup html = urlopen('https://blog.csdn.net/zzc15806/') #获取网页 b...

2018-12-29 17:31:54

阅读数 1777

评论数 0

Ubuntu Git安装与使用

本文整理和归纳了关于Ubuntu中Git安装与使用的资源,希望对大家有所帮助。 1 安装 安装方式主要有两种,即通过Apt和source: 1.1 通过Apt安装: 官网上提供的命令是: $ sudo add-apt-repository ppa:git-core/ppa1 中间暂停时,...

2018-12-13 22:25:15

阅读数 1996

评论数 0

6. 测试模型

数据集和代码均已上传到Github中,欢迎大家下载使用。 Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial 如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q. 测试模型 这部分比较简单,一共包含:读...

2018-12-12 16:59:32

阅读数 2067

评论数 0

5. 训练模型

数据集和代码均已上传到Github中,欢迎大家下载使用。 Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial 如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q. 训练模型 我们采用交叉验证(5-fol...

2018-12-12 16:50:49

阅读数 2084

评论数 0

4. 构建模型

数据集和代码均已上传到Github中,欢迎大家下载使用。 Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial 如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q. 构建模型 本节使用keras搭建一个简...

2018-12-12 16:37:38

阅读数 2327

评论数 0

3. 特征提取

数据集和代码均已上传到Github中,欢迎大家下载使用。 Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial 如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q. 特征提取 对于音频特征,相信稍微了解一...

2018-12-12 16:27:49

阅读数 2417

评论数 2

2. 数据分析

数据集和代码均已上传到Github中,欢迎大家下载使用。 Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial 如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q. 数据分析 本节针对ESC-10数据集进...

2018-12-12 15:57:15

阅读数 2134

评论数 0

1. 数据集准备和工具安装

数据集和代码均已上传到Github中,欢迎大家下载使用。 Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial 如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q.  简介 声音识别指的是将声波转化为某种...

2018-12-12 14:58:16

阅读数 2272

评论数 4

Ubuntu下更新Git版本

sudo add-apt-repository ppa:git-core/ppa sudo apt-get update sudo apt-get install git  

2018-12-12 13:00:25

阅读数 1977

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭