package com;
public class Sort {
private static int[] list = {7,3,4,1,9,2,8,5,6,0,5};
/**
* 冒泡排序, O(n^2)
*/
private static void bubble(){
for (int i = 0; i< list.length ; i++){
for (int j= 0; j< list.length -i -1; j++){
if (list[j] > list[j+1]){
int tmp = list[j];
list[j] = list[j+1];
list[j+1] = tmp;
}
}
}
}
/**
* 简单选择排序, O(n^2)
* 将要排序的对象分成两部分,一部分是已排序的,一部分是未排序的,从未排序的部分选择最小的,并放入已排序部分的最后一个
*/
private static void selection(){
for (int i = 0; i< list.length; i++){
int position = i;
for (int j =i + 1; j< list.length; j++){
if (list[position] > list[j]){
position = j;
}
}
int tmp = list[i];
list[i] = list[position];
list[position] = tmp;
}
}
/**
* 直接插入排序, O(n^2)
* 将数据分为两部分,从后面部分依次取出数据,插入前面部分(插入后的前面这部分有序)
*/
private static void insertion(){
for (int i=1; i<list.length; i++){
int j = i -1 ;
int tmp = list[i];
while(list[j] > tmp){
list[j+1] = list[j];
j--;
if (j<0) break;
}
list [j+1] = tmp ;
}
}
/**
* 快速排序, O(n*log n)
* 属于一种优化冒泡排序
* 定义一个枢轴,使得在其之前的都小于它之后的都大于等于它,然后按这个法则在枢轴两边递归运算;枢轴一般取第一个元素
*/
private static void quickSort(int low, int high){
if (low < high){
int p = partition(low,high);
quickSort(low, p-1);
quickSort(p+1, high);
}
}
/**
* 将序列划分为2个子序列,并返回枢轴元素位置;其中,枢轴元素前的元素都小于枢轴元素,后的都大于枢轴元素
*/
private static int partition(int low, int high){
int pivot = list[low];
while(low < high){
while(low < high && list[high] >= pivot) high --;
list[low] = list[high];
while(low < high && list[low] <= pivot) low ++;
list[high] = list[low];
}
list[low] = pivot;
return low;
}
/**
* 希尔排序,又称“缩小增量排序”,是改进的直接插入排序方式
* 时间复杂度依赖于步长序列,如当步长序列为delta[k]=2^(t-k+1) - 1,时间复杂度O(n^1.5)
* 本例,我们选择步长序列为:{5,3,1}
*/
private static void shell(){
int[] step = {5,3,1};
for (int i:step)
shellInsert(i);
}
private static void shellInsert(int deltaK){
for (int i=deltaK; i<list.length; i++){
if (list[i]<list[i-deltaK]){
int tmp = list[i];
int j = i - deltaK;
for (;j>=0 && tmp < list[j]; j-=deltaK ){
list[j + deltaK] = list[j];
}
list[j+deltaK] = tmp ;
}
}
}
public static void main(String[] args) {
bubble();
// selection();
// insertion();
// quickSort(0, list.length -1);
// shell();
for (int x:list)
System.out.print(x+" ");
}
}
public class Sort {
private static int[] list = {7,3,4,1,9,2,8,5,6,0,5};
/**
* 冒泡排序, O(n^2)
*/
private static void bubble(){
for (int i = 0; i< list.length ; i++){
for (int j= 0; j< list.length -i -1; j++){
if (list[j] > list[j+1]){
int tmp = list[j];
list[j] = list[j+1];
list[j+1] = tmp;
}
}
}
}
/**
* 简单选择排序, O(n^2)
* 将要排序的对象分成两部分,一部分是已排序的,一部分是未排序的,从未排序的部分选择最小的,并放入已排序部分的最后一个
*/
private static void selection(){
for (int i = 0; i< list.length; i++){
int position = i;
for (int j =i + 1; j< list.length; j++){
if (list[position] > list[j]){
position = j;
}
}
int tmp = list[i];
list[i] = list[position];
list[position] = tmp;
}
}
/**
* 直接插入排序, O(n^2)
* 将数据分为两部分,从后面部分依次取出数据,插入前面部分(插入后的前面这部分有序)
*/
private static void insertion(){
for (int i=1; i<list.length; i++){
int j = i -1 ;
int tmp = list[i];
while(list[j] > tmp){
list[j+1] = list[j];
j--;
if (j<0) break;
}
list [j+1] = tmp ;
}
}
/**
* 快速排序, O(n*log n)
* 属于一种优化冒泡排序
* 定义一个枢轴,使得在其之前的都小于它之后的都大于等于它,然后按这个法则在枢轴两边递归运算;枢轴一般取第一个元素
*/
private static void quickSort(int low, int high){
if (low < high){
int p = partition(low,high);
quickSort(low, p-1);
quickSort(p+1, high);
}
}
/**
* 将序列划分为2个子序列,并返回枢轴元素位置;其中,枢轴元素前的元素都小于枢轴元素,后的都大于枢轴元素
*/
private static int partition(int low, int high){
int pivot = list[low];
while(low < high){
while(low < high && list[high] >= pivot) high --;
list[low] = list[high];
while(low < high && list[low] <= pivot) low ++;
list[high] = list[low];
}
list[low] = pivot;
return low;
}
/**
* 希尔排序,又称“缩小增量排序”,是改进的直接插入排序方式
* 时间复杂度依赖于步长序列,如当步长序列为delta[k]=2^(t-k+1) - 1,时间复杂度O(n^1.5)
* 本例,我们选择步长序列为:{5,3,1}
*/
private static void shell(){
int[] step = {5,3,1};
for (int i:step)
shellInsert(i);
}
private static void shellInsert(int deltaK){
for (int i=deltaK; i<list.length; i++){
if (list[i]<list[i-deltaK]){
int tmp = list[i];
int j = i - deltaK;
for (;j>=0 && tmp < list[j]; j-=deltaK ){
list[j + deltaK] = list[j];
}
list[j+deltaK] = tmp ;
}
}
}
public static void main(String[] args) {
bubble();
// selection();
// insertion();
// quickSort(0, list.length -1);
// shell();
for (int x:list)
System.out.print(x+" ");
}
}