Task3特征工程

 

特征工程是什么
有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。

特征工程常见方法
常见的特征工程包括:
1、异常处理:
通过箱线图(或 3-Sigma)分析删除异常值;
BOX-COX 转换(处理有偏分布);
长尾截断;
2、特征归一化/标准化:
标准化(转换为标准正态分布);
归一化(抓换到 [0,1] 区间);
针对幂律分布,可以采用公式:
3、数据分桶:
等频分桶;
等距分桶;
Best-KS 分桶(类似利用基尼指数进行二分类);
卡方分桶;
4、缺失值处理:
不处理(针对类似 XGBoost 等树模型);
删除(缺失数据太多);
插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
分箱,缺失值一个箱;
5、特征构造:
构造统计量特征,报告计数、求和、比例、标准差等;
时间特征,包括相对时间和绝对时间,节假日,双休日等;
地理信息,包括分箱,分布编码等方法;
非线性变换,包括 log/ 平方/ 根号等;
特征组合,特征交叉;
仁者见仁,智者见智。
6、特征筛选
过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;
7、降维
PCA/ LDA/ ICA;
特征选择也是一种降维

 

代码

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter
%matplotlib inline

path = './datalab/231784/'
Train_data = pd.read_csv('./datalab/231784/used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv('./datalab/231784/used_car_testA_20200313.csv', sep=' ')
print(Train_data.shape)
print(Test_data.shape)
def outliers_proc(data,col_name,scale=3):
    '''
    用于清洗异常值,默认用box_plot(scale=3)进行清洗
    :param data:接受 pandas 数据格式
    :param col_name:列名
    :param scale:尺度
    :return:'''
    def box_plot_outlier(data_ser,box_scale):
        '''
        利用箱线图去除异常值
        :param data_ser: 接受pandas.series 数据格式
        :param box_scdale:箱线图尺度
        :return:'''
        iqr=box_scale*(data_ser.quantile(0.75)-data_ser.quantile(0.25))
        #极差
        val_low=data_ser.quantile(0.25)-iqr
        val_up= data_up=data_ser.quantile(0.75)+iqr

        rule_low=(data_ser<val_low)
        rule_up=(data_ser>val_up)
        return (rule_low,rule_up),(val_low,val_up)
    
    data_n=data.copy()
    data_series=data_n[col_name]
    rule,value=box_plot_outlier(data_series,box_scale=scale)
    index=np.arange(data_series.shape[0])[rule[0]|rule[1]]
    print('删除的数字是:{}'.format(len(index)))
    
    data_n=data_n.drop(index)
    data_n.reset_index(drop=True,inplace=True)
    print('现在这列有的数字:{}'.format(data_n.shape[0]))
    
    index_low=np.arange(data_series.shape[0])[rule[0]]
    outliers=data_series.iloc[index_low]
    print('大于上限的数据的描述是:')
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n

 

# 我们可以删掉一些异常数据,以 power 为例。  
# 这里删不删同学可以自行判断
Train_data = outliers_proc(Train_data,'power',scale=3)

# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'

data['used_time']=(pd.to_datetime(data['creatDate'],format='%Y%m%d',errors='coerce')-
                  pd.to_datetime(data['regDate'],format='%Y%m%d',errors='coerce')).dt.days
#  .dt.days两个时间做差后转化为int64形式的,也就是差了n天


# 看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%
# 我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()


# 从邮编中提取城市信息,相当于加入了先验知识后几位是城市
data['city']=data['regionCode'].apply(lambda x:str(x)[:-3])
data=data



# 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
# 这里要以 train 的数据计算统计量
#套用这个模版好用


Train_gb=Train_data.groupby('brand')#以品牌分类
all_info={}
for kind,kind_data in Train_gb:
    info ={}
    kind_data= kind_data[kind_data['price']>0 ]#选出其中大于零的部分
    info['brand_amount']=len(kind_data)
    info['brand_price_max']=kind_data.price.max()
    info['brand_price_median']=kind_data.price.median()
    info['brand_price_min']=kind_data.price.min()
    info['brand_price_sum']=kind_data.price.sum()
    info['brand_price_std']= kind_data.price.std()
    info['brand_price_average']=round(kind_data.price.sum()/(len(kind_data)+1),2)
    all_info[kind]=info
    
brand_fe=pd.DataFrame(all_info).T.reset_index().rename(columns={"index":"brand"})
brand_fe.head(10)

 

数据分桶 也就是把连续的数据进行离散化切分,一类一类的
以 power 为例
这时候我们的缺失值也进桶了,
为什么要做数据分桶呢,原因有很多,= =
1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

#当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性

bin=[i*10 for i in range(31)]#设置划分的间隔是10,0、10、20\....300
data['power_bin']=pd.cut(data['power'],bin,labels=False)
data[['power_bin', 'power']].head()

# 删除不需要的数据
data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)

# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv',index=0)


# 我们对其取 log,在做归一化
from sklearn import preprocessing
min_max_scaler=preprocessing.MinMaxScaler()

#具体minmax的过程
data['power']=np.log(data['power']+1)
data['power']=((data['power']-np.min(data['power']))/np.max(data['power']-np.min(data['power'])))



#直接做归一化
data['kilometer']=((data['kilometer']-np.min(data['kilometer']))/(np.max(data['kilometer'])-np.min(data['kilometer'])))


# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))
data['brand_amount']=max_min(data['brand_amount'])
data['brand_price_average']=max_min(data['brand_price_average'])
data['brand_price_max']=max_min(data['brand_price_max'])
data['brand_price_median']=max_min(data['brand_price_median'])
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))



# 对类别特征进行 OneEncoder
data=pd.get_dummies(data,columns=['model','brand', 'bodyType', 'fuelType',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])




#特征筛选
#1)过滤式 线进行相关性分析
print(data['power'].corr(data['price'],method='spearman'))
print(data['kilometer'].corr(data['price'],method='spearman'))
print(data['brand_amount'].corr(data['price'],method='spearman'))
print(data['brand_price_average'].corr(data['price'],method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值