数字图像处理の笔记,第二章-数字图像基础

数字图像处理の笔记,第二章-数字图像基础

1.1 视觉感知要素

数字图像处理建立于数学和概率公式的基础之上,但人类的直觉和分析将直接影响“使用技术的选择”,这种主观判断很大一部分来自于人类的视觉。

1.1.1 人眼结构

在“成像”中起重要作用的结构

  • 晶状体:由纤维细胞层组成,由附在睫状体上的纤维悬挂着。对短驳的光有较高吸收率
  • 视网膜:位于眼镜最深处,不满眼球后部内壁,作为成像区域
  • 睫状体:调节晶状体形状

1.1.2 眼睛中图像的形成

  • 普通照相机成像:镜头有固定焦距,通过改变镜头和成像平面间的距离实现各种距离的聚焦,胶片放置在成像平面上即可。
  • 人眼成像:晶状体与成像区域(视网膜)的距离固定,睫状体中的限购能够在远离或接近目标时分别变扁或加厚晶状体,导致晶状体发生形变,实现正确聚焦的焦距。应用:通过人与物体间的距离,可以用数学方法得知物体高度等参数。

1.1.3 亮度适应与辨别

  • 主观亮度 指 人的视觉系统所能感知的亮度,人眼亮视觉的范围约为10^6,从暗视觉过渡到亮视觉的近似范围约0.001~0.1朗伯,可以推测:视觉系统不能在同一范围内工作

  • 亮度适应现象:由于人类的视觉系统不能同时在一个范围内工作,所以需要通过 调整灵敏度 来适应环境变化。

  • 人眼辨别光强变化的能力影响图像处理的效果

    • 相关实验如下:一空间中,有一位观察者 和 一个大到足以占有观察者全部视野的均匀发光区(由不透明玻璃组成)。使用强度I可变的光源从后面照向这块玻璃,观察者的视野中会增加一个照射分量△I,以圆形的方式出现一瞬,如图所示。在这里插入图片描述

    • 若△I亮度不够,观察者观察不到变化。△I逐渐加强,强到足以使观察者察觉。△Ic / I 称为韦伯比,△Ic 是在背景照明为I时辨别照明增量的50%。韦伯比越大,表示亮度辨别能力较弱,反之较弱。

    • log△Ic/I的曲线如图所示[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-J8yRmV94-1682820795227)(C:\Users\86189\AppData\Roaming\Typora\typora-user-images\image-20230427163444298.png)]

      纵坐标为“韦伯比”,图像表明:在低照明级别下,韦伯比 较大,亮度辨别能力较差,会随着背景照明强度提高而改善(提高韦伯比)。观察者从 无法察觉到照明增量 到 能察觉到 照明增量,这一过程表明:视觉系统会在不同强度区域的边界处出现“下冲”或“上冲”现象,这一现象可用马赫带效应解释。

      马赫带效应:如图所示,几个条带的强度恒定,但在条带间的边界处,我们能明显感觉到两块亮度不同的区域,在边界处亮度对比极其明显,这是一种主观的感觉,说明人类的视觉系统有增强边缘对比度的机制。关于同时对比现象:指物体强度相同,但人眼的主观意识会随物体背景照度改变而改变。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zxnSR1zT-1682820971383)(C:\Users\86189\AppData\Roaming\Typora\typora-user-images\image-20230427182328957.png)]

1.2 光和电磁波谱

  • 光是一种特殊的电磁辐射,能为人眼所感知。对人眼而言,电磁波谱存在 可见光波段,可分为六个主要颜色区域,不同波长下,颜色平滑过渡,不存在突然跳变。

  • 人对物体颜色的感知取决于物体反射光的性质,物体在可见光谱的有限范围内,反射不同范围波长内的光,对应波长的光颜色即人眼观察到的颜色。

没有颜色的光唯一属性
单色光 或 五色光强度 或 大小
  • 灰度级:表示单色光的强度,从黑到白的单色光的度量值范围称为灰度级,单色图像称为灰度图像

1.3 图像感知与获取

  • 获取数字图像的传感器主要传感器配置在这里插入图片描述

    • 功能:将辐射能量转换为数字图像
    • 原理:将输入能源转变为输出电压,相当于将传感器的响应以数字(电压值)的形式表示出来
  • 图像形成模型

    • 图像表示方法:使用二维函数f(x,y)表示,且有0<f(x,y)<∞

    • f(x,y)的表征方法:f(x,y) = i(x,y)r(x,y),由入射分量和反射分量乘积合并而成。0表示全吸收,1表示全反射

    • 关于入射分量与反射分量

      内容\名称入射分量反射分量
      限制0<i(x,y)<∞0<r(x,y)<1
      性质取决于照射源取决于成像物体的特性

1.4 图像取样和量化

  • 取样:对连续图像的坐标值进行数字化

  • 量化:对连续图像的幅值进行数字化

  • 数值阵列用户处理和算法开发,可以公式形式将一个M*N的数值阵列表示为矩阵。数字化需要判定M值、N值和离散灰度级数L。M和N必须>0;L取2^k

  • 存储数字图像所需的比特数b=M * N * k

  • 空间分辨率:图像中可辨别的 最小细节 的 度量,单位:dpi,分辨率与存储所需空间呈正比,没有固定的取值标准,需要根据实际情况选择合适的分辨率,例如:使用内插方法改进图像

  • 灰度分辨率:灰度级中可辨别的 最小变化。若图像的灰度级别不足,容易形成伪轮廓。

  • 图像内插

  • 分类最近邻内插法双线性内插双三次内插
    作用调整图像大小,将原图像中最临近的灰度赋给每个新位置用4个最近邻的灰度 估计 相应位置的灰度,具体数值由公式在这里插入图片描述

得到 |
| 缺点 | 易出现人为缺陷,分辨率下降时图像易出现明显退化 | 非线性 | 非线性 |
| 优点 | 简单、线性 | 定位精准,即使图像分辨率降低,清晰度退化也不算大 | 定位效果比双线性内插更加精准 |

1.5 像素

  • 邻接类型:4邻接,8邻接,m邻接(混合邻接
  • 距离度量:若满足以下条件,则D是距离函数或度量

1.6 相关数学工具

  • 矩阵:图像科室为矩阵,做相应的线性/非线性处理
  • 作用:用于降噪、增强差别、校正阴影、图像旋转、图像变换等
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值