查找——B-树的基本操作

  /*     
  *Copyright (c) 2015 , 烟台大学计算机学院     
  *All right resvered .     
  *文件名称:查找——B-树的基本操作.cpp     
  *作    者: 郑兆涵     
  *查找——B-树的基本操作
  */ 

问题:实现B-树的基本操作。基于序列{4, 9, 0, 1, 8, 6, 3, 5, 2, 7}完成测试。
(1)创建对应的3阶B-树b,用括号法输出b树。
(2)从b中分别删除关键字为8和1的节点,用括号法输出删除节点后的b树。

编程代码:

#include <stdio.h>
#include <malloc.h>
#define MAXM 10                     //定义B-树的最大的阶数
typedef int KeyType;                //KeyType为关键字类型
typedef struct node                 //B-树结点类型定义
{
    int keynum;                     //结点当前拥有的关键字的个数
    KeyType key[MAXM];              //key[1..keynum]存放关键字,key[0]不用
    struct node *parent;            //双亲结点指针
    struct node *ptr[MAXM];         //孩子结点指针数组ptr[0..keynum]
} BTNode;
typedef struct                      //B-树的查找结果类型
{
    BTNode *pt;                     //指向找到的结点
    int i;                          //1..m,在结点中的关键字序号
    int tag;                        //1:查找成功,O:查找失败
}  Result;
int m;                              //m阶B-树,为全局变量
int Max;                            //m阶B-树中每个结点的至多关键字个数,Max=m-1
int Min;                            //m阶B-树中非叶子结点的至少关键字个数,Min=(m-1)/2
int Search(BTNode *p,KeyType k)
{
    //在p->key[1..keynum]中查找i,使得p->key[i]<=k<p->key[i+1]
    int i=0;
    for(i=0; i<p->keynum && p->key[i+1]<=k; i++);
    return i;
}
Result SearchBTree(BTNode *t,KeyType k)
{
    /*在m阶t树t上查找关键字k,返回结果(pt,i,tag)。若查找成功,则特征值
     tag=1,指针pt所指结点中第i个关键字等于k;否则特征值tag=0,等于k的
     关键字应插入在指针Pt所指结点中第i和第i+1个关键字之间*/
    BTNode *p=t,*q=NULL; //初始化,p指向待查结点,q指向p的双亲
    int found=0,i=0;
    Result r;
    while (p!=NULL && found==0)
    {
        i=Search(p,k);              //在p->key[1..keynum]中查找i,使得p->key[i]<=k<p->key[i+1]
        if (i>0 && p->key[i]==k)    //找到待查关键字
            found=1;
        else
        {
            q=p;
            p=p->ptr[i];
        }
    }
    r.i=i;
    if (found==1)                   //查找成功
    {
        r.pt=p;
        r.tag=1;
    }
    else                            //查找不成功,返回K的插入位置信息
    {
        r.pt=q;
        r.tag=0;
    }
    return r;                       //返回k的位置(或插入位置)
}
void Insert(BTNode *&q,int i,KeyType x,BTNode *ap)
{
    //将x和ap分别插入到q->key[i+1]和q->ptr[i+1]中
    int j;
    for(j=q->keynum; j>i; j--)  //空出一个位置
    {
        q->key[j+1]=q->key[j];
        q->ptr[j+1]=q->ptr[j];
    }
    q->key[i+1]=x;
    q->ptr[i+1]=ap;
    if (ap!=NULL) ap->parent=q;
    q->keynum++;
}
void Split(BTNode *&q,BTNode *&ap)
{
    //将结点q分裂成两个结点,前一半保留,后一半移入新生结点ap
    int i,s=(m+1)/2;
    ap=(BTNode *)malloc(sizeof(BTNode));    //生成新结点*ap
    ap->ptr[0]=q->ptr[s];                   //后一半移入ap
    for (i=s+1; i<=m; i++)
    {
        ap->key[i-s]=q->key[i];
        ap->ptr[i-s]=q->ptr[i];
        if (ap->ptr[i-s]!=NULL)
            ap->ptr[i-s]->parent=ap;
    }
    ap->keynum=q->keynum-s;
    ap->parent=q->parent;
    for (i=0; i<=q->keynum-s; i++) //修改指向双亲结点的指针
        if (ap->ptr[i]!=NULL) ap->ptr[i]->parent = ap;
    q->keynum=s-1;                      //q的前一半保留,修改keynum
}
void NewRoot(BTNode *&t,BTNode *p,KeyType x,BTNode *ap)
{
    //生成含信息(T,x,ap)的新的根结点*t,原t和ap为子树指针
    t=(BTNode *)malloc(sizeof(BTNode));
    t->keynum=1;
    t->ptr[0]=p;
    t->ptr[1]=ap;
    t->key[1]=x;
    if (p!=NULL) p->parent=t;
    if (ap!=NULL) ap->parent=t;
    t->parent=NULL;
}
void InsertBTree(BTNode *&t, KeyType k, BTNode *q, int i)
{
    /*在m阶t树t上结点*q的key[i]与key[i+1]之间插入关键字k。若引起
     结点过大,则沿双亲链进行必要的结点分裂调整,使t仍是m阶t树。*/
    BTNode *ap;
    int finished,needNewRoot,s;
    KeyType x;
    if (q==NULL)                        //t是空树(参数q初值为NULL)
        NewRoot(t,NULL,k,NULL);         //生成仅含关键字k的根结点*t
    else
    {
        x=k;
        ap=NULL;
        finished=needNewRoot=0;
        while (needNewRoot==0 && finished==0)
        {
            Insert(q,i,x,ap);               //将x和ap分别插入到q->key[i+1]和q->ptr[i+1]
            if (q->keynum<=Max) finished=1; //插入完成
            else
            {
                //分裂结点*q,将q->key[s+1..m],q->ptr[s..m]和q->recptr[s+1..m]移入新结点*ap
                s=(m+1)/2;
                Split(q,ap);
                x=q->key[s];
                if (q->parent)              //在双亲结点*q中查找x的插入位置
                {
                    q=q->parent;
                    i=Search(q, x);
                }
                else needNewRoot=1;
            }
        }
        if (needNewRoot==1)                 //根结点已分裂为结点*q和*ap
            NewRoot(t,q,x,ap);              //生成新根结点*t,q和ap为子树指针
    }
}
void DispBTree(BTNode *t)   //以括号表示法输出B-树
{
    int i;
    if (t!=NULL)
    {
        printf("[");            //输出当前结点关键字
        for (i=1; i<t->keynum; i++)
            printf("%d ",t->key[i]);
        printf("%d",t->key[i]);
        printf("]");
        if (t->keynum>0)
        {
            if (t->ptr[0]!=0) printf("(");  //至少有一个子树时输出"("号
            for (i=0; i<t->keynum; i++)     //对每个子树进行递归调用
            {
                DispBTree(t->ptr[i]);
                if (t->ptr[i+1]!=NULL) printf(",");
            }
            DispBTree(t->ptr[t->keynum]);
            if (t->ptr[0]!=0) printf(")");  //至少有一个子树时输出")"号
        }
    }
}
void Remove(BTNode *p,int i)
//从*p结点删除key[i]和它的孩子指针ptr[i]
{
    int j;
    for (j=i+1; j<=p->keynum; j++)      //前移删除key[i]和ptr[i]
    {
        p->key[j-1]=p->key[j];
        p->ptr[j-1]=p->ptr[j];
    }
    p->keynum--;
}
void Successor(BTNode *p,int i)
//查找被删关键字p->key[i](在非叶子结点中)的替代叶子结点
{
    BTNode *q;
    for (q=p->ptr[i]; q->ptr[0]!=NULL; q=q->ptr[0]);
    p->key[i]=q->key[1];    //复制关键字值
}
void MoveRight(BTNode *p,int i)
//把一个关键字移动到右兄弟中
{
    int c;
    BTNode *t=p->ptr[i];
    for (c=t->keynum; c>0; c--) //将右兄弟中所有关键字移动一位
    {
        t->key[c+1]=t->key[c];
        t->ptr[c+1]=t->ptr[c];
    }
    t->ptr[1]=t->ptr[0];        //从双亲结点移动关键字到右兄弟中
    t->keynum++;
    t->key[1]=p->key[i];
    t=p->ptr[i-1];              //将左兄弟中最后一个关键字移动到双亲结点中
    p->key[i]=t->key[t->keynum];
    p->ptr[i]->ptr[0]=t->ptr[t->keynum];
    t->keynum--;
}
void MoveLeft(BTNode *p,int i)
//把一个关键字移动到左兄弟中
{
    int c;
    BTNode *t;
    t=p->ptr[i-1];              //把双亲结点中的关键字移动到左兄弟中
    t->keynum++;
    t->key[t->keynum]=p->key[i];
    t->ptr[t->keynum]=p->ptr[i]->ptr[0];

    t=p->ptr[i];                //把右兄弟中的关键字移动到双亲兄弟中
    p->key[i]=t->key[1];
    p->ptr[0]=t->ptr[1];
    t->keynum--;
    for (c=1; c<=t->keynum; c++)    //将右兄弟中所有关键字移动一位
    {
        t->key[c]=t->key[c+1];
        t->ptr[c]=t->ptr[c+1];
    }
}
void Combine(BTNode *p,int i)
//将三个结点合并到一个结点中
{
    int c;
    BTNode *q=p->ptr[i];            //指向右结点,它将被置空和删除
    BTNode *l=p->ptr[i-1];
    l->keynum++;                    //l指向左结点
    l->key[l->keynum]=p->key[i];
    l->ptr[l->keynum]=q->ptr[0];
    for (c=1; c<=q->keynum; c++)        //插入右结点中的所有关键字
    {
        l->keynum++;
        l->key[l->keynum]=q->key[c];
        l->ptr[l->keynum]=q->ptr[c];
    }
    for (c=i; c<p->keynum; c++)     //删除父结点所有的关键字
    {
        p->key[c]=p->key[c+1];
        p->ptr[c]=p->ptr[c+1];
    }
    p->keynum--;
    free(q);                        //释放空右结点的空间
}
void Restore(BTNode *p,int i)
//关键字删除后,调整B-树,找到一个关键字将其插入到p->ptr[i]中
{
    if (i==0)                           //为最左边关键字的情况
        if (p->ptr[1]->keynum>Min)
            MoveLeft(p,1);
        else
            Combine(p,1);
    else if (i==p->keynum)              //为最右边关键字的情况
        if (p->ptr[i-1]->keynum>Min)
            MoveRight(p,i);
        else
            Combine(p,i);
    else if (p->ptr[i-1]->keynum>Min)   //为其他情况
        MoveRight(p,i);
    else if (p->ptr[i+1]->keynum>Min)
        MoveLeft(p,i+1);
    else
        Combine(p,i);
}
int SearchNode(KeyType k,BTNode *p,int &i)
//在结点p中找关键字为k的位置i,成功时返回1,否则返回0
{
    if (k<p->key[1])    //k小于*p结点的最小关键字时返回0
    {
        i=0;
        return 0;
    }
    else                //在*p结点中查找
    {
        i=p->keynum;
        while (k<p->key[i] && i>1)
            i--;
        return(k==p->key[i]);
    }
}
int RecDelete(KeyType k,BTNode *p)
//查找并删除关键字k
{
    int i;
    int found;
    if (p==NULL)
        return 0;
    else
    {
        if ((found=SearchNode(k,p,i))==1)       //查找关键字k
        {
            if (p->ptr[i-1]!=NULL)              //若为非叶子结点
            {
                Successor(p,i);                 //由其后继代替它
                RecDelete(p->key[i],p->ptr[i]); //p->key[i]在叶子结点中
            }
            else
                Remove(p,i);                    //从*p结点中位置i处删除关键字
        }
        else
            found=RecDelete(k,p->ptr[i]);       //沿孩子结点递归查找并删除关键字k
        if (p->ptr[i]!=NULL)
            if (p->ptr[i]->keynum<Min)          //删除后关键字个数小于MIN
                Restore(p,i);
        return found;
    }
}
void DeleteBTree(KeyType k,BTNode *&root)
//从B-树root中删除关键字k,若在一个结点中删除指定的关键字,不再有其他关键字,则删除该结点
{
    BTNode *p;              //用于释放一个空的root
    if (RecDelete(k,root)==0)
        printf("   关键字%d不在B-树中\n",k);
    else if (root->keynum==0)
    {
        p=root;
        root=root->ptr[0];
        free(p);
    }
}
int main()
{
    BTNode *t=NULL;
    Result s;
    int j,n=10;
    KeyType a[]= {4,9,0,1,8,6,3,5,2,7},k;
    m=3;                                //3阶B-树
    Max=m-1;
    Min=(m-1)/2;
    printf("创建一棵%d阶B-树:\n",m);
    for (j=0; j<n; j++)                 //创建一棵3阶B-树t
    {
        s=SearchBTree(t,a[j]);
        if (s.tag==0)
            InsertBTree(t,a[j],s.pt,s.i);
        printf("   第%d步,插入%d: ",j+1,a[j]);
        DispBTree(t);
        printf("\n");
    }
    printf("  结果B-树: ");
    DispBTree(t);
    printf("\n");
    printf("删除操作:\n");
    k=8;
    DeleteBTree(k,t);
    printf("  删除%d: ",k);
    printf("B-树: ");
    DispBTree(t);
    printf("\n");
    k=1;
    DeleteBTree(k,t);
    printf("  删除%d: ",k);
    printf("B-树: ");
    DispBTree(t);
    printf("\n");
    return 0;
}

输出结果:



学习心得:

        顺序查找和二分查找都是静态查找,而二叉排序树和平衡二叉树都是内部动态查找,其查找的数据量小,且在内存中完成.B树用作外部查找,也称为多路平衡查找树,是一种组织和维护外村文件系统非常有效的数据结构.

        B-树中所有节点的孩子节点树的最大值称为B-树的阶,通常用m表示,从查找效率考虑,要求m≥3.一棵m阶B-树或者是一棵空树,或者是满足以下要求的m叉树:

(1)所有的叶子节点在同一层,并且不带信息;

(2)树中每个节点至多由m棵子树(即至多含有m-1个关键字);

(3)若根节点不是终端节点,则根节点至少由两棵子树;

(4)除根节点外,其他非叶子节点至少由m/2取上阶棵子树(即至少含有m/2取上阶减1哥关键字);

在B-树中叶子节点不带信息(可以看做是外部节点或查找失败的节点,实际上这些节点不存在,指向这些节点的指针为空).


B-树的查找:

        在B-树中查找给定关键字的方法类似于二叉排序树上的查找,不同的是在每个节点上确定下查找的路径不一定是二路的,而是n+1路的.因为节点内的关键字序列key[1..n]有序,故既可以用顺序查找,也可以用折半查找.在一棵B-树上查找关键字为k的方法为:将k与根节点中的key[i]进行比较:

(1)若k=key[i],则查找成功;

(2)若k<key[1],则沿着指针ptr[0]所指的子树继续查找;

(3)若key[i]<k<key[i+1],则沿着指针ptr[i]所指的子树继续查找;

(4)若k>key[n],则沿着指针ptr[n]所指的子树继续查找.


B-树的插入:

        将关键字k插入到B-树的过程分为两步:

(1)利用前述的B-树的查找算法找出该关键字的插入节点(注意B-树的插入节点一定属于最低非叶子节点层).

(2)判断该节点是否还有空位置,即判断该节点是否满足n<m-1,若该节点满足n<m-1,说明该节点还有空位置,直接把关键字k插入到该节点的合适位置上即可(即满足插入后节点上的关键字扔保持有序);若有n=m-1,说明该节点已没有空位置,需要把节点分裂成两个.分裂的做法是,取一新节点,把原节点上的关键字和k按升序排序后,从中间位置(即m/2取上阶处)把关键字(不包括中间位置的关键字)分成两部分,左部分所含关键字放在旧节点中,右部分所含关键字放在新节点中,中间位置的关键字连同新节点的存储位置插入到双亲节点中.如果双亲节点的关键字个数也查过Max,则要再分裂,再网上插,直至这个过程传到根节点为止.

         B-树的生成就是从一棵空树开始,逐个插入关键字.


B-树的删除:

        B-树的删除过程与插入过程类似,要使删除后节点中的关键字个数≥m/2取上阶-1,涉及节点的合并问题.在B-树上产出关键字k的过程分两步:

(1)利用前述的B-树的查找算法找出该关键字所在的节点.

(2)在节点上删除关键字k分两种情况:一种是在最低非叶子节点层的节点上删除关键字;另一种是在其他非叶子节点上删除关键字.在其他非叶子节点上删除关键字的过程:假设要删除关键字key[i](1≤i≤n),在删去该关键字后,以该节点ptr[i]所指子树中的最小关键字key[min]来代替被删关键字(注意ptr[i]所指子树中的最小关键字key[min]一定是在叶子节点上的),然后再以指针ptr[i]所指节点为根节点查找并删除key[min](即以ptr[i]所指节点为B-树的根节点,以key[min]为要删除的关键字,再次调用B-树上的删除算法),这样也就把在其他非叶子节点上删除关键字k的问题转化成了在最低非叶子节点层的节点上删除关键字key[min]的问题.在B-树的最低非叶子节点层的节点上删除关键字共有三种情况:

①加入被删节点的关键字个数大于Min(m/2取上阶),说明删去该关键字后对应节点扔满足B-树的定义,则可直接删去该关键字.

②加入被删节点的关键字个数等于Min,说明删去该关键字后对应节点将不满足B-树的定义,此时若该节点的左(右)兄弟节点中的关键字个数大于Min,则把该节点的左(右)兄弟节点中最大(最小)的关键字上移到双亲节点中,同时把双亲节点中大于(小于)上移关键字的关键字下移到要删除关键字的节点中,这样删去关键字k后该节点以及它的左(右)兄弟节点都仍旧满足B-树的定义.

③加入被删节点的关键字个数等于Min,并且该节点的左和右兄弟节点(如果存在的话)中关键字个数均等于Min,这时,需把要删除关键字的节点与其左(右)兄弟节点以及双亲节点中分割二者的关键字合并成一个节点,如果因此使双亲节点中关键字个数小于Min,则对双亲节点左同样处理,以至于可能知道对根节点左这样的处理而使整个树减少一层.


B+树:

在索引文件组织中,经常使用B-树的一些变形,其中B+树是一种应用广泛的变形.

(1)每个分支节点至多由m棵子树.

(2)根节点或者没有子树,或者至少由两棵子树.

(3)除根节点外,其他每个分支节点至少由m/2取上阶棵子树.

(4)由n棵子树的节点有n个关键字.

(5)所有叶子节点包含全部关键字及指向相应记录的指针,而且叶子节点按关键字大小顺序链接(可以把每个叶子节点看成是一个基本索引块,它的指针不再指向另一级索引块,而是直接指向数据文件中的记录).

(6)所有分支节点(可看成是索引的索引)中仅包含它的各个子节点(即下级索引的索引块)中最大关键字及指向子节点的指针.


B+树的查找

        在B+树中可以采用两种查找方式,一种是直接从最小关键字开始进行顺序查找,另一种是从B+树的根节点开始进行随机超赵.后一种查找方式与B-树的查找方法相似,只是在分支节点上的关键字与查找值相等时,查找并不结束,要继续查到叶子节点为止,此时若查找成功,则按所给指针取出对应元素.因此,在B+树中,不管查找成功与否,每次查找都是经过了一条从树根节点到叶子节点的路径.


B+树的插入

        与B-树的插入操作相似,B+树的插入也从叶子节点开始,当插入后节点中的关键字个数大于m时要分裂成两个节点,它们所含关键字个数分别为(m+1)/2取上阶和(m+1)/2取下阶, 同时要使它们的双亲节点中包含由这两个节点的最大关键字和指向这两个节点的指针.若双亲节点的关键字个数大于m,应继续分裂,以此类推.


B+树的删除

        B+树的删除也是从叶子节点开始,当叶子节点中最大关键字被删除时,分支节点中的值可以作为"分界关键字"存在.若因删除操作而使节点中关键字个数少于m/2取下阶时,则从兄弟节点中调剂关键字或将该节点和兄弟节点合并,其过程和B-树的删除操作相似.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
阿赛形论坛系统V5(AsaiSXBBSV5) 通用说明书   注意: A - 使用之,请认真阅读一下这个说明书,然后,要注意在您上传论坛到网上之一定要修改一下bbsconfig.asp文件内的内容; B - 使用IIS调试请启用父目录,并设置Default.asp为默认首页; C - 如果IIS调试中遇上NTFS、权限问题等,请复制地址http://77ya.com/rar/iis.rar,下载阿赛网站系统专用IIS调试工具; D - 官方可以下载简介的截图使用说明http://77ya.com/rar/AsaiSXBBSV5-ReadMe.mht。 演示网址:http://77ya.com/bbs/ 登录帐户:管理员(帐户:77ya.com,密码:77ya.com,从会员登录入口直接登录即可!);普通会员(郭言赛,77ya.com) 精辟概括:AsaiSXBBS是一套新颖、高速、安全、实用的论坛系统,拥有普通论坛的所有功能,基于ASP ACCESS的全伪静态(后缀为.html)访问模式。   二、系统功能介绍 01、独立完整的论坛体系,具备发帖、回帖、置顶、精华、经验帖、会员帖等常用论坛的所有功能; 02、独立完整的会员体系,与论坛体系分离,可删除、替换其他会员系统,并能无缝对接各种大中型网站的会员系统; 03、优化各大搜索引擎的收录,全站默认全伪静态(后缀名.html)访问; 04、全新原创的形论坛架构理念,速度更快、外形更加美观,帖子之间的关系一目了然; 05、集成管理员功能,提供编辑、删除、一键清理过期帖子,删除帖子等多种高级功能; 06、提供热门点击、热门回帖、最新发帖等帖子标记方便检索浏览,同时提供热门关键词、热门标签等栏目类功能; 07、支持帖子搜索、标签分类等、帖子主题、发帖心情等论坛高级功能; 08、提供单帖浏览、单帖回复,支持回复贴置顶、标记精华等操作; 09、会员登录后可修改、删除自己的发帖,管理员可批量对帖子进行操作; 10、支持我的帖子列表、热门帖子列表、火热帖子排行、精华帖子列表、帖子排序列表等各种列表方式; 11、会员系统支持E-Mail在线认证,认证后可获得一定经验和金币的奖励; 12、管理员可对会员进行查找、筛选、修改、删除等基本操作; 13、会员登录后可修改自己的资料,也可自行通过对邮箱进行认证; 14、全伪静态(后缀名.html)模式的会员系统,更安全、更快捷; 15、精简程序为4个文件,解压后空系统大小约200KB,所有调用修改及网站标题等修改均在AsaiFun.asp文件中,方便大家设置; 16、设置入库贴,放置会员或管理员不当操作删除掉,有效保护好帖、精华帖,提供类似信息系统一般的过期废帖删除功能; 17、金币贴,可以任意设置查看需要收取的金币个数,所有收取金币回归系统; 18、金币内容,可设置固定的金币内容查看需要收取的金币个数,设置金币内容的可以从购买者处获得50%的收益,其他被系统回收; 19、回复贴与回复内容功能,只有参与回复的会员才能浏览帖子内容或被设为仅回复可看的内容; 20、可以设置是否关闭论坛、关闭论坛的时间; 21、可以限制发布特殊贴(回复贴、金币贴等)的会员等级,默认仅VIP会员和管理员可发布; 22、可以设置发帖、回帖间隔时间; 23、支持UBB所见即所得编辑器,可以编辑视频、音频、动画SWF、图片等媒体文件,同时可以插入QQ在线状态,添加免费信息、回复信息、金币信息、引用信息等等,超强的可视化帖子编辑器; ——V4新增功能—— 24、支持普通论坛模式、普通形模式、豪华形模式三种个性模式,支持自由切换,可以自行设定默认的论坛显示模式; 25、默认提供8种论坛风格,可以设置默认的论坛,也可以在台由用户自己选择喜欢的风格,所有风格均全颜色格式,没有使用图片,方便大家打造自己风格皮肤; 26、提供用户发帖权限设置,可以指定某一等级用户才能发帖; 27、支持设置在某一时段不容许任何用户发帖子和修改帖子; 28、论坛和用户数据分离,方便大家整合其他用户网站系统; 29、可以自由修改论坛、用户、数据库的文件夹所在地,而不影响系统运行,增加论坛的安全性; ——V5新增功能—— 30、更新编辑器为阿赛经典HTML编辑器,功能强大、使用方便 快捷; 31、增加短消息功能; 32、增加金币交易管理,支持购买记录查看、出售记录查看; 33、管理员可以对交易订单直接取消、退款的功能; 34、重新优化会员和管理功能,使用同一个入口,指定某一会员为管理员的功能,获取登录后的管理权利; 35、支持热门关键词功能,自动记录搜索字词,后台可设置热门关键; 36、支持网站在线设置; 37、提供帖子自动锁定和手工锁定的功能; 38、增加帖子批量删除、会员批量删除、短信批量删除、交易记录批量删除等各式批量操作功能; 39、支持过滤敏感词汇的功能,提供过滤词汇替换功能; 40、提供发帖间隔控制功能,分时段发帖功能,更多功能请使用体验; 41、可设置仅会员可以访问论坛; 42、可以锁定帖子,禁止修改、回复该帖的功能; 43、可严格控制各个等级会员的发帖权限,普通会员可以发布普通贴、会员帖、回复贴,认证会员可以发布金币贴,高级会员可以发布金币贴、可以回复锁定帖子,超级会员和管理员可以发布入库贴。   三、常见问题 1、怎么修改数据库以及数据库链接? 答:AsaiBBSInc文件夹中的bbsconfig.asp可以直接修改数据库的具体位置与名称,修改后同时需要修改AsaiBBSData文件夹下的数据库名称[为防止恶意下载,请上传使用务必修改一下]。 2、论坛的名称以及相关信息怎么修改为自己需要的信息? 答:所有需要修改的地方都在AsaiBBSInc文件夹中的bbsconfig.asp里面,高级修改设置请打开AsaiBBSInc和AsaiBBSUser文件夹下的AsaiBBSFun.asp、AsaiFun.asp,所有的系统过程与设置均在里面。 3、如何修改论坛界面? 答:我们做了一些论坛风格和用户界面,大家可以打开AsaiBBSUser文件夹下的Default.asp中修改论坛会员界面,打开AsaiBBSInc文件夹的AsaiBBSFun.asp修改首页风格,所有程序部分内容均封装在**Fun.asp中,全开源大家可以自行改动。 4、如何登录后台? 答:首先注册一个会员帐户,在AsaiBBSInc文件夹中的bbsconfig.asp中可指定某一个论坛会员为管理员,从会员登录口登录该会员以后,可以获得管理员功能,管理所有会员信息,管理所有帖子信息等。 5、从网上下载的和官方演示的相同吗? 答:是不同的,网上共享的是MF(免费版),仅供学习使用,不可商用,如觉得系统不错可以至官网http://77ya.com购买商业版使用,谢谢您的支持。 6、用IIS调试的时候无法打开首页? 答:如果您的IIS文档中没有设置Default.asp为默认首页,请添加,否则无法正常运行,建议初学者关闭IIS,复制地址http://77ya.com/rar/iis.rar,下载阿赛网站系统专用IIS调试工具,进行调试。   四、版权声明及购买者义务 1、本程序由阿赛工作室促权,阿赛独立开发完成,与其他网站和个人无关,所有版权均由阿赛工作室所有; 2、购买者不得公开、传播本程序,如发现,将予以民事诉讼,请务必遵守; 3、支持购买者对程序进行再开发使用,但禁止将非共享版内的任何源程序暴露; 4、《阿赛形论坛系统》最终解释权归阿赛工作室,藉由江苏律师事务所提供全程法律支持。
结构及其各种变体算法是计算机科学中比较重要的领域之一。其中,B-是一种自平衡结构,通常用于磁盘和数据库操作系统中的数据存储和查找。本文将介绍如何设计和实现一棵B-,并使用其进行动态查找。 首先,需要从文件中读取数据,这将是构建B-的第一步。可以使用C++中的fstream库来实现文件读写操作。数据应该存储在文件中,每数据代表一个键值对,需要将其导入到内存中进行处理。 B-是一种平衡,其每个节点都有多个子节点。每个节点最多可以存储2 * t个键值对(其中,t是称为最小度数的参数,通常为一个较小的整数)。对于一个非根节点,其至少包含t个键值对。同时,根节点的最小限制为1(如果它不是叶节点)。因此,B-的关键在于将数据分布在每个节点中,并确保深度平衡,从而可以在Log N级别的时间中进行搜索和查找。 节点中的键值对应该按照升序排列。然后,使用插入排序算法将新数据添加到正确的位置。如果一个节点的大小已经超过2 * t,就需要拆分该节点并将某些键值对转移到新节点中,这一过程称为分裂节点。建议使用递归算法来完成该操作,因为这样比循环算法更容易实现。 在插入或删除一个节点后,需要对整个进行修复以确保其保持平衡。这可以通过在必要时使用的旋转和合并来完成。旋转是指移动上的某些节点以保持的平衡。合并是指通过将两个节点组合为一个节点来减少的深度。 完成这些步骤后,B-就可以用于动态查找。对于每个查询,从根节点开始沿着向下,并沿着每个节点的键值对进行比较,最终到达叶节点。如果叶节点中包含查询键值,则可以返回该键值;否则,则表示没有找到该键值。 总之,B-实现动态查找需要进行文件读取、分裂节点、旋转和合并等操作。尽管实现细节可能较为复杂,但可以改善大规模数据集的检索效率,可以应用于各种高效的数据存储和检索系统中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Henry Zheng

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值