任意一个整数均能表示成An*10^(n-1) + An-1*10^(n-2) + ... + A2*10^2 + A1*10 + A0的形式,视10为自变量X,则化为一个多项式。两数相乘转化为两多项式相乘。以系数表示法表示的多项式相乘其复杂度为N^2,若采用点值表示法,结合适当的点的选取,能实现O(NlogN)的算法。
若一个多项式的最高次为N-1,那么取N个点对(xi, yi)就能够唯一确定这个多项式,其中各xi相异,yi为对应自变量xi的多项式的值。此时选取N次单位复根即可。具体定理见算法导论第30章。