FFT快速傅里叶变换以O(NlogN)的时间复杂度实现大数乘

通过将大数表示为多项式并利用快速傅里叶变换(FFT),可以将两数相乘的时间复杂度降低到O(NlogN)。在多项式乘法中,选取特定的点值进行计算,比如N次单位复根,可以实现这一优化。FFT首先将系数表示的多项式转换为点值表示,然后进行点乘操作,最后再转换回系数表示,整个过程包括两次FFT变换和一次简单的乘法操作。
摘要由CSDN通过智能技术生成

任意一个整数均能表示成An*10^(n-1) + An-1*10^(n-2) + ... + A2*10^2 + A1*10 + A0的形式,视10为自变量X,则化为一个多项式。两数相乘转化为两多项式相乘。以系数表示法表示的多项式相乘其复杂度为N^2,若采用点值表示法,结合适当的点的选取,能实现O(NlogN)的算法。


若一个多项式的最高次为N-1,那么取N个点对(xi, yi)就能够唯一确定这个多项式,其中各xi相异,yi为对应自变量xi的多项式的值。此时选取N次单位复根即可。具体定理见算法导论第30章。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值