长风破浪会有时,直挂云帆济沧海

完美一切 一切完美 止于至善

CaffeLoss - FocalLossLayer

原文: CaffeLoss - FocalLossLayer - AIUAI Github - focal_loss_layer Focal Loss 论文理解及公式推导 - AIUAI 基于 SoftmaxWithLossLayer 实现的 FocalLossLayer. 主要涉及四个文件:...

2018-10-31 20:23:52

阅读数:60

评论数:0

Caffe 实践 - 基于 ResNet101 的 Multi-label 多标签标注的训练与部署

以前曾尝试过修改 Caffe ImageDataLayer 源码的方式来读取多个 labels - ImageMultilabelDataLayer [[Caffe实践 - 基于VGG16 多标签分类的训练与部署]. 修改源码的方式可能显得稍微有点繁琐, 毕竟需要重新编译. 这里尝试了一种新的方...

2018-05-08 16:48:26

阅读数:2122

评论数:0

Caffe Loss 层 - SigmoidCrossEntropyLoss 推导与Python实现

Caffe Loss 层 - SigmoidCrossEntropyLoss 推导与Python实现 [原文 - Caffe custom sigmoid cross entropy loss layer]. 很清晰的一篇介绍,学习下. 1. Sigmoid Cross Entropy ...

2018-02-05 13:21:22

阅读数:1177

评论数:4

Caffe Vision 层 - 卷积层 ConvLayer

Caffe Vision 层 - 卷积层 ConvLayer Caffe 的视觉层一般采用 images 作为输入,输出另一种 images. 也可以是其它类型的数据和维度. images 可以是单通道 (1 channel) 的灰度图,也可以是三通道(3 channel) 的 RGB 彩色图...

2018-02-01 15:56:18

阅读数:397

评论数:0

Caffe - 训练日志 log 可视化分析

Caffe - 训练日志 log 可视化分析 在采用 shell 脚本进行 caffe 训练时,可以输出训练过程到log 文件,如 $CAFFE_ROOT/build/tools/caffe train \ --solver=solver.prototxt \ --gpu ...

2018-01-31 12:55:50

阅读数:2232

评论数:9

Caffe Loss 层 - LossLayers

Caffe Loss 层 Loss 计算的是网络输出的 target 值与真实label之间的误差,最小化以优化网络. Loss 值由 forward-pass 计算得到,并在 backward-pass 计算关于 loss 的梯度值. Caffe 主要提供了以下 Loss 层: 1...

2018-01-24 21:42:10

阅读数:942

评论数:1

Caffe源码 - inner_product_layer 全连接层

Caffe - 全连接层 inner_product_layer 图像分类中,网络结构的最后一般有一个或多个全连接层. 全连接层的每个节点都与其上层的所有节点相连,以综合前面网络层提取的特征. 其全连接性,导致参数较多. 全连接层将卷积的 2D 特征图结果转化为 1D 向量. 如 MNI...

2018-01-12 15:14:05

阅读数:385

评论数:0

Caffe2 - (七)Caffemodel 转换为 Caffe2 pb 模型

Caffe2 - Caffemodel 转换为 Caffe2 pb 模型 1. 单输入单输出 - caffe_translator.py Caffe2 提供了将 caffemodel 转换为 caffe2 模型的工具——caffe_translator.py. 其使用: pyth...

2018-01-03 09:56:41

阅读数:3415

评论数:0

Caffe 源码 - BatchNorm 层与 Scale 层

batch norm layer & scale layer 简述 Batch Normalization 论文给出的计算: 前向计算: 后向计算: BatchNorm 主要做了两部分: [1] 对输入进行归一化,xnorm=x−μσxnorm=x...

2017-12-19 15:37:27

阅读数:4811

评论数:0

Caffe源码 - math_functions

math_function 定义了caffe 中用到的一些矩阵操作和数值计算的一些函数,这里以float类型为例做简单的分析. 转载以供学习 Caffe C++ 源码实现时参考

2017-12-12 21:36:46

阅读数:210

评论数:0

目标检测 - Faster R-CNN 训练过程源码理解

Faster R-CNN 训练过程源码理解 训练脚本 ./tools/train_net.py 主函数开始. 数据读取层 RoIDataLayer

2017-12-02 15:04:10

阅读数:1738

评论数:1

论文实践学习 - Faster R-CNN 测试

Faster R-CNN 测试 [Code-Caffe] 摘要: Faster R-CNN 实践学习 环境:Ubuntu 14.04,py-faster-rcnn 1. Faster R-CNN 编译配置 下载源码 git clone git@githu...

2017-12-01 17:09:48

阅读数:459

评论数:0

Caffe - Clion 调试 C++ 源码简单使用

Clion 调试 Caffe C++ 源码 环境:Ubuntu14.04,Caffe,Clion2017.2 1. Clion - Ubuntu 安装 官网下载 Clion 的 .tar.gz 压缩包 Clion-Linux 解压压缩包到当前文件夹 tar -zxvf Clion-...

2017-11-22 15:33:56

阅读数:3723

评论数:0

Caffe Loss 层 - Lifted Struct Similarity Softmax Layer

Caffe Loss - Lifted Struct Similarity Softmax Layer Loss Layer From Deep-Metric-Learning-CVPR16. 1. 在 prototxt 中的定义 layer { name: &q...

2017-11-18 14:38:33

阅读数:430

评论数:0

论文阅读学习 - Center Loss: Caffe 实现

Center Loss - Caffe实现

2017-11-16 13:08:48

阅读数:1317

评论数:0

Caffe - 使用caffe训练时Loss变为nan的原因

使用caffe训练时Loss变为nan的原因From [原创|使用caffe训练时Loss变为nan的原因]1. 梯度爆炸 原因:梯度变得非常大,使得学习过程难以继续 现象:观察log,注意每一轮迭代后的loss。loss随着每轮迭代越来越大,最终超过了浮点型表示的范围,就变成了NaN。 措施: ...

2017-11-06 13:19:30

阅读数:821

评论数:0

Caffe源码 - RoI Pooling 层

RoI Pooling 层

2017-10-24 15:25:26

阅读数:2051

评论数:0

目标检测 - 基于 SSD: Single Shot MultiBox Detector 的人体上下半身检测

基于 SSD 的人体上下半身检测 这里主要是通过将训练数据转换成 Pascal VOC 数据集格式来实现 SSD 检测人体上下半身. 由于没有对人体上下半身进行标注的数据集, 这里利用 MPII Human Pose Dataset 来将 Pose 数据转换成上下半身 box 数据, 故bo...

2017-10-23 10:42:08

阅读数:2061

评论数:8

论文实践学习 - Look into Person: Self-supervised Structure-sensitive Learning

Look into Person: Self-supervised Structure-sensitive Learning Code-Caffe Paper LIP Dataset - 百度云 LIP Dataset - Google Drive attention+ssl.caff...

2017-10-17 15:17:00

阅读数:656

评论数:12

论文阅读实践 - 基于CNN的年龄和性别分类

基于CNN的年龄和性别分类 学习论文 Age and Gender Classification using Convolutional Neural Networks. 主要是针对年龄和性别分别建立分类问题,基于CaffeNet,年龄转化为 8 类别、性别为 2 分类问题,训练两个网络模型...

2017-08-28 09:57:04

阅读数:842

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭