Caffe Loss 层 - LossLayers

30 篇文章 5 订阅
17 篇文章 0 订阅

Caffe Loss 层

Loss 计算的是网络输出的 target 值与真实label之间的误差,最小化以优化网络.

Loss 值由 forward-pass 计算得到,并在 backward-pass 计算关于 loss 的梯度值.

Caffe 主要提供了以下 Loss 层:

1. SoftmaxWithLoss

用于一对多(one-of-many) 的分类任务,计算多项 logistic 损失值. 通过 softmax 来传递实值预测值,以得到关于各类的概率分布.

该网络层可以分解为 SoftmaxLayer + MultinomialLogisticLoss 层的组合,不过其梯度计算更加数值稳定.

测试时,该网络层可以由 SoftmaxLayer 层代替.

1.1 Forward 参数

输入参数

  • Input 1 - 预测值 x x (N×C×H×W),其值区间为 [inf,inf] [ − i n f , i n f ] ,表示对于 K=CHW K = C H W 类的每一类的预测分数值.

    通过 SoftmaxLayer p^nk=exp(xnk)[kexp(xnk)] p ^ n k = e x p ( x n k ) [ ∑ k ′ e x p ( x n k ′ ) ] 来将预测值(scores) x x 映射得到关于各类别的概率分布.

  • Input2 - 真实值 label l (N×1×1×1) ( N × 1 × 1 × 1 ) ,实值,区间为 ln[0,1,2,...,K1] l n ∈ [ 0 , 1 , 2 , . . . , K − 1 ] ,分别表示 K K 类中的真实类别标签 label.

输出参数:

  • Output 1 - 计算的 cross-entropy 分类 loss 值,(1×1×1×1) E=1NNn=1log(p^n,ln) E = − 1 N ∑ n = 1 N l o g ( p ^ n , l n ) p^ p ^ 是 Softmax 输出的类别概率. [注:SoftmaxLayer 只是输出每一类的概率值,并不与 label 作比较.]

1.2 Backward 参数

计算关于预测值的 softmax loss 误差值梯度.

不计算关于 label 输入[bottom[1]]的 梯度.

template<typename Dtype >
void caffe::SoftmaxWithLossLayer< Dtype >::Backward_cpu (   
    const vector< Blob< Dtype > *> &    top,
    const vector< bool > &  propagate_down,
    const vector< Blob< Dtype > *> &    bottom 
)   

参数:

  • top - (1×1×1×1) ( 1 × 1 × 1 × 1 ) ,其 diff 为 loss_weight λ λ ,因为 λ λ 是该层输出 li l i 的系数,整体网络 Loss E=λili+other loss terms E = λ i l i + o t h e r   l o s s   t e r m s ,有 Eli=λi ∂ E ∂ l i = λ i .

  • propagate_down[1] - 必须是 false,因为不对 label 作梯度计算.

  • bottom - [0] (N×C×H×W) ( N × C × H × W ) ,预测值 x x ;backward 计算 diff Ex.

    ​ [1] (N×1×1×1) ( N × 1 × 1 × 1 ) ,labels,忽略,不计算.

1.3 prototxt 定义

layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc8"
  bottom: "label"
  top: "loss"
  loss_param{
    ignore_label:0  # 指定 label 值,在计算 loss 时忽略该值.
    normalize: true # 如果为 true,则基于当前 labels 数量(不包含忽略的 label) 进行归一化; 否则,只是加和.
  }
}

2. EuclideanLoss

计算两个输入的平方和.

用于实值回归任务.

Euclidean Loss 计算: E=12NNn=1||y^nyn||22 E = 1 2 N ∑ n = 1 N | | y ^ n − y n | | 2 2 .

可以用于最小二乘(least-squares) 回归任务. 将 InnerProductLayer 的输出值作为 EuclideanLossLayer 的输入,即是线性最小二乘回归问题.

2.1 Forward 参数

输入参数:

  • Input 1 - (N×C×H×W) ( N × C × H × W ) ,预测值 y^[inf,inf] y ^ ∈ [ − i n f , i n f ]
  • Input 2 - (N×C×H×W)) ( N × C × H × W ) ) ,目标值 y[inf,inf] y ∈ [ − i n f , i n f ]

输出参数:

  • Output 1 - (1×1×1×1) ( 1 × 1 × 1 × 1 ) ,计算的 Euclidean Loss 值.

2.2 Backward 参数

计算关于输入的 Euclidean 误差梯度.

template<typename Dtype >
void caffe::EuclideanLossLayer< Dtype >::Backward_cpu   (   
    const vector< Blob< Dtype > *> &    top,
    const vector< bool > &  propagate_down,
    const vector< Blob< Dtype > *> &    bottom 
)   

参数:

  • top - 如上.

  • propagate_down - EuclideanLossLayer 可以计算关于 label (bottom[1]) 的梯度.

  • bottom - [0] (N×C×H×W) ( N × C × H × W ) ,预测值 y^ y ^ ;backward 计算梯度 diff Ey^=1nNn=1(y^nyn) ∂ E ∂ y ^ = 1 n ∑ n = 1 N ( y ^ n − y n ) .

    ​ [1] (N×C×H×W) ( N × C × H × W ) ,真实值 y y ;backward 计算梯度 diff Ey=1nn=1N(yny^n).

2.3 prototxt 定义

layer {
  name: "loss"
  type: "EuclideanLoss"
  bottom: "pred"
  bottom: "label"
  top: "loss"
  loss_weight: 1
}

3. MultinomialLogisticLoss

多项 logistic 损失函数层,用于一对多的分类任务,其直接采用预测的概率分布作为网络层输入.

当预测值不是概率分布时,应该采用 SoftmaxWithLossLayer,其在计算多项 logistic loss 前,采用 SoftmaxLayer 将预测值映射到概率分布.

3.1 Forward 参数

输入参数:

  • Input 1 - 预测值 p^ p ^ (N×C×H×W) ( N × C × H × W ) ,其取值区间 [0,1] [ 0 , 1 ] ,表示对于 K=CHW K = C H W 类的预测概率.

    每个预测向量 p^n p ^ n 的和应该为 1, nKk=1p^nk=1 ∀ n ∑ k = 1 K p ^ n k = 1 .

  • Input2 - 真实值 label l l (N×1×1×1),实值 ln[0,1,2,...,K1] l n ∈ [ 0 , 1 , 2 , . . . , K − 1 ] ,为 K K 类 classes 中的真实类别标签.

输出参数:

  • Output 1 - (1×1×1×1),计算的多项 logistic loss 值: E=1NNn=1log(p^n,ln) E = − 1 N ∑ n = 1 N l o g ( p ^ n , l n ) .

3.2 prototxt 定义

layer {
  name: "loss"
  type: "MultinomialLogisticLoss"
  bottom: "fc8"
  bottom: "label"
  top: "loss"
  loss_param{
    ignore_label:0
    normalize: true
    FULL = 0
  }
}
message LossParameter {
  optional int32 ignore_label = 1;
  enum NormalizationMode {
    FULL = 0;
    VALID = 1;
    BATCH_SIZE = 2;
    NONE = 3;
  }
  optional NormalizationMode normalization = 3 [default = VALID];
  optional bool normalize = 2;
}

4. InfogainLoss

信息增益损失函数

InfogainLossLayer 是 MultinomalLogisticLossLayer 的一种泛化形式.

其采用“信息增益”(information gain, infogain) 矩阵来指定所有的 label pairs 的“值”(value).

不仅仅接受预测的每个样本在每类上的概率信息,还接受信息增益矩阵信息.

当 infogain 矩阵是单位矩阵时,则与 MultinomalLogisticLossLayer 等价.

message InfogainLossParameter {
  // Specify the infogain matrix source.
  optional string source = 1;
  optional int32 axis = 2 [default = 1]; // axis of prob
}

4.1 Forward 参数

输入参数:

  • Input 1 - 预测值 p^ p ^ (N×C×H×W) ( N × C × H × W ) ,其取值区间 [0,1] [ 0 , 1 ] ,表示对于 K=CHW K = C H W 类的预测概率.

    每个预测向量 p^n p ^ n 的和应该为 1, nKk=1p^nk=1 ∀ n ∑ k = 1 K p ^ n k = 1 .

  • Input2 - 真实值 label l l (N×1×1×1),实值 ln[0,1,2,...,K1] l n ∈ [ 0 , 1 , 2 , . . . , K − 1 ] ,为 K K 类 classes 中的真实类别标签.

  • Input3 - (optional), 1×1×K×K,infogain 矩阵 H H .

输出参数:

  • Output 1 - (1×1×1×1),计算的 infogain 多项 logistic loss 值: E=1NNn=1Hlnlog(p^n,ln)=1NNn=1Kk=1Hlnlog(p^n,k) E = − 1 N ∑ n = 1 N H l n l o g ( p ^ n , l n ) = − 1 N ∑ n = 1 N ∑ k = 1 K H l n l o g ( p ^ n , k ) .

    其中 Hln H l n 表示 infogain 矩阵 H H 的第 ln 行.

4.2 prototxt 定义

layer {
    bottom: "score"
    bottom: "label"
    top: "infoGainLoss"
    name: "infoGainLoss"
    type: "InfogainLoss"
    infogain_loss_param {
        source: "/.../infogainH.binaryproto"
        axis: 1  # compute loss and probability along axis
    }
}

5. HingeLoss

用于一对多 的分类任务.

其有时也被叫做 Max-Margin Loss. SVM 的目标函数也层用过.

比如,二分类情况时,

l(y)=max(0,1ty) l ( y ) = m a x ( 0 , 1 − t ⋅ y )

y y 为[-1, 1]区间的预测值,t=[+1,1] 为目标值.

也就是 |y|1 | y | ≤ 1 ,也就是对某个正确分类的样本距离分割线的距离大于1时,不给予任何奖赏,避免分类过度注重某些类,更关注与整体的分类 Loss.

message HingeLossParameter {
  enum Norm {
    L1 = 1;
    L2 = 2;
  }
  // Specify the Norm to use L1 or L2
  optional Norm norm = 1 [default = L1];
}

5.1 Forward 参数

输入参数:

  • Input 1 - 预测值 t t (N×C×H×W),其取值区间 [infinf] [ − i n f , i n f ] ,表示对于 K=CHW K = C H W 类的预测概率.

    在 SVM 中,假设 D-dim 特征 XRD×N X ∈ R D × N 和学习的超参数 WRD×K W ∈ R D × K t t 是內积 XTW 的结果.

    因此,如果网络只有一个 InnerProductLayer,其num_output=D,将其输出的预测值输入到 HingeLossLayer,且没有其它待学习参数或 losses,则等价于 SVM.

  • Input2 - 真实值 label l l (N×1×1×1),实值 ln[0,1,2,...,K1] l n ∈ [ 0 , 1 , 2 , . . . , K − 1 ] ,为 K K 类 classes 中的真实类别标签.

输出参数:

  • Output 1 - (1×1×1×1),计算的 hinge loss 值: E=1NNn=1Kk=1[max(0,1δ{ln=k}tnk)]p E = 1 N ∑ n = 1 N ∑ k = 1 K [ m a x ( 0 , 1 − δ { l n = k } t n k ) ] p

    Lp L p 范数,默认 p=1 p = 1 ,L1 范数; p=2 p = 2 ,L2 范数,如 L2-SVM.

    δ{condition}=1,if condition;otherwise,δ{condition}=1 δ { c o n d i t i o n } = 1 , i f   c o n d i t i o n ; o t h e r w i s e , δ { c o n d i t i o n } = − 1

5.2 prototxt 定义

# L1 Norm
layer {
  name: "loss"
  type: "HingeLoss"
  bottom: "pred"
  bottom: "label"
}

# L2 Norm
layer {
  name: "loss"
  type: "HingeLoss"
  bottom: "pred"
  bottom: "label"
  top: "loss"
  hinge_loss_param {
    norm: L2
  }
}

6. ContrastiveLoss

Caffe Siamese Network 采用了 ContrastiveLoss 函数,能够有效的处理 paired data.

Caffe - mnist_siamese.ipynb.

ContrastiveLoss 计算公式:

E=12NNn=1(y)d2+(1y)max(margind,0)2 E = 1 2 N ∑ n = 1 N ( y ) d 2 + ( 1 − y ) m a x ( m a r g i n − d , 0 ) 2

其中, d=||anbn||2 d = | | a n − b n | | 2 .

message ContrastiveLossParameter {
  // margin for dissimilar pair
  optional float margin = 1 [default = 1.0];
  // The first implementation of this cost did not exactly match the cost of
  // Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
  // legacy_version = false (the default) uses (margin - d)^2 as proposed in the
  // Hadsell paper. New models should probably use this version.
  // legacy_version = true uses (margin - d^2). This is kept to support /
  // reproduce existing models and results
  optional bool legacy_version = 2 [default = false];
}

6.1 Forward 参数

输入参数:

  • Input 1 - (N×C×1×1) ( N × C × 1 × 1 ) ,特征 a[inf,inf] a ∈ [ − i n f , i n f ]

  • Input2 - (N×C×1×1) ( N × C × 1 × 1 ) ,特征 b[inf,inf] b ∈ [ − i n f , i n f ]

  • Input3 - N×1×1×1 N × 1 × 1 × 1 ,二值相似度 s[0,1] s ∈ [ 0 , 1 ]

输出参数:

  • Output 1 - (1×1×1×1) ( 1 × 1 × 1 × 1 ) ,计算的 contrastive loss 值 E E ,用于训练 siamese 网络.

6.2 prototxt 定义

layer {
  name: "loss"
  type: "ContrastiveLoss"
  bottom: "feat"
  bottom: "feat_p"
  bottom: "sim"
  top: "loss"
  contrastive_loss_param {
    margin: 1
  }
}

From mnist_siamese_train_test.prototxt

7. Accuracy

计算 一对多 分类任务的分类精度.

没有 backward 计算.

message AccuracyParameter {
  // top_k 精度
  optional uint32 top_k = 1 [default = 1];

  // The "label" axis of the prediction blob, whose argmax corresponds to the
  // predicted label -- may be negative to index from the end (e.g., -1 for the
  // last axis).  For example, if axis == 1 and the predictions are
  // (N x C x H x W), the label blob is expected to contain N*H*W ground truth
  // labels with integer values in {0, 1, ..., C-1}.
  optional int32 axis = 2 [default = 1];

  // 精度计算,忽略 ignore_label 
  optional int32 ignore_label = 3;
}

7.1 参数

AccuracyLayer 提供了 AccuracyParameter accuracy_param 参数选项:

  • top_k - 可选,默认为 1. 选取最大的 k 个预测值为正确预测. 如, k=5 k = 5 表示,如果 groundtruth label 在 top 5 的预测 labels 内,则认为是预测正确.

Reference

[1] - 交叉熵代价函数(损失函数)及其求导推导

[2] - caffe层解读系列——hinge_loss

[3] - 损失函数改进方法总览

[4] - 视觉分类任务中处理不平衡问题的loss比较

[5] - Caffe Loss层 - HingelossLayer

[6] - caffe Namespace Reference

[7] - 机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值