#论文地址
https://arxiv.org/abs/2502.13969
在无线通信和定位技术的领域中,射频源定位(RFSL)一直是研究的热点。它在诸多关键领域,如搜索救援、干扰源检测、敌对活动监测等,都有着不可或缺的应用。随着无人机(UAV)技术的蓬勃发展,利用无人机进行射频源定位成为了极具潜力的研究方向。今天要解读的论文Bridging Simulation and Reality: A 3D Clustering-Based Deep Learning Model for UAV-Based RF Source Localization,提出了创新性的方法,在该领域取得了重要进展。
一、研究背景与挑战
传统的射频源定位研究面临着诸多难题。在无线信号传播建模方面,多数基于无人机的定位研究采用自由空间路径损耗模型,这种模型虽然简单,但无法准确反映现实环境中的复杂因素。像无人机的 3D 动态飞行姿态(滚转、俯仰、偏航)、天线的 3D 辐射模式、多径效应以及无人机自身结构造成的阴影遮挡等,都会对接收信号强度(RSS)产生显著影响,可导致窄带链路功率变化高达 60dB。而传统的自由空间和双射线传播模型,难以精确捕捉这些复杂情况,使得模拟结果与现实场景存在较大差距。
在深度学习应用于定位的过程中,尽管基于指纹的深度学习定位方法在室外应用取得了一定进展,但现有基于深度学习的定位解决方案,大多仅在模拟数据集上进行训练和评估。由于模拟环境与现实世界存在本质差异,这些方法在实际应用中往往难以达到预期效果。
二、创新解决方案
(一)增强双射线传播模型
为了弥补模拟与现实之间的差距,研究团队提