杜教筛
文章平均质量分 76
ZigZagK
一个蒟蒻。
展开
-
【杜教筛】51Nod1244[莫比乌斯函数之和]题解
题目概述求 ∑ni=1μ(i)\sum_{i=1}^n \mu(i) 。解题报告杜教筛可以用来求积性函数的前缀和,具体想法是用另外一个函数卷待求函数,如下: ∑i=1n(f∗g)(i)=∑i=1n∑d|if(id)g(d)=∑d=1ng(d)∑i=1⌊nd⌋f(i)=∑i=1ng(i)S(⌊ni⌋)⇔g(1)S(n)=∑i=1n(f∗g)(i)−∑i=2ng(i)S(⌊ni⌋)⇔S(n)=∑ni=原创 2017-12-25 11:42:03 · 855 阅读 · 0 评论 -
【杜教筛】51Nod1239[欧拉函数之和]题解
题目概述求 ∑ni=1φ(i)\sum_{i=1}^{n}\varphi(i) 。解题报告因为 n=∑ni=1∑nj=1[gcd(i,n)=j]=∑d|n∑ndi=1[gcd(i.nd)=1]=∑d|iφ(nd)n=\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,n)=j]=\sum_{d|n}\sum_{i=1}^{n\over d} [gcd(i.{n\over d})=1原创 2017-12-26 15:14:42 · 435 阅读 · 0 评论 -
【杜教筛】BZOJ4916[神犇(JZ)和蒟蒻(ZZK)]题解
题目概述给出 nn ,求 A=∑ni=1μ(i2),B=∑ni=1φ(i2)A=\sum_{i=1}^n{\mu (i^2)},B=\sum_{i=1}^n{\varphi (i^2)} 。解题报告第一问…… i2i^2 ?喜闻乐见输出 11 。第二问,由于 φ(i2)=iφ(i)\varphi(i^2)=i\varphi(i) ,所以要求 ∑ni=1iφ(i)\sum_{i=1}^{n}i\var原创 2018-01-09 22:28:21 · 652 阅读 · 0 评论