机器学习模型计算accuracy

本文深入探讨了机器学习中分类与回归问题的评估方法,详细介绍了准确率与均方误差的计算方式,以及如何利用这些指标来评估模型的预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:分类问题

from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(train_x, train_y, test_size=0.33, random_state=123)
model.fit(X_train, y_train)
x_pred = xgbr.predict(X_test)
accuracy_score(y_test, y_pred)

二:回归问题

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(train_x, train_y, test_size=0.33, random_state=123)
model.fit(X_train, y_train)
x_pred = xgbr.predict(X_test)
mean_squared_error(y_test, y_pred)

参考

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值