\
\
常见函数求导公式:
泰勒展开式(Taylor):
sigmoid 函数
导数:
概率公式:
\
条件概率公式:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)= \Large \frac{P(AB)}{P(B)} P(A∣B)=P(B)P(AB)
全概率公式:
P ( A ) = ∑ i n P ( A ∣ B i ) P ( B i ) P(A)= \Large \sum_i^n P(A|B_i)P(B_i) P(A)=∑inP(A∣Bi)P(Bi)
贝叶斯公式(Bayes):
P
(
B
i
∣
A
)
=
P
(
A
∣
B
i
)
P
(
B
i
)
∑
j
n
P
(
A
∣
B
j
)
P
(
B
j
)
P(B_i|A)= \Large \frac {P(A|B_i)P(B_i) } { \sum_j^n P(A|B_j)P(B_j)}
P(Bi∣A)=∑jnP(A∣Bj)P(Bj)P(A∣Bi)P(Bi)
\
常见概率分布:
\
概率分布总结:
分布 | 参数 | 数学期望 | 方差 |
---|---|---|---|
正态分布 | μ , σ > 0 \mu,\sigma >0 μ,σ>0 | μ \mu μ | σ 2 \sigma^2 σ2 |
二项分布 | n ≥ 1 , 0 < p < 1 n\ge 1,0<p<1 n≥1,0<p<1 | n p np np | n p ( 1 − p ) np(1-p) np(1−p) |
泊松分布 | λ > 0 \lambda >0 λ>0 | λ \lambda λ | λ \lambda λ |
均匀分布 | a < b a<b a<b | ( a + b ) / 2 (a+b)/2 (a+b)/2 | ( a + b ) 2 / 12 (a+b)^2/12 (a+b)2/12 |
指数分布 | θ > 0 \theta >0 θ>0 | θ \theta θ | θ 2 \theta^2 θ2 |
两点分布 | 0 < p < 1 0<p<1 0<p<1 | p p p | p ( 1 − p ) p(1-p) p(1−p) |
1. 正态分布 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2):
2. 两点分布 X ∼ b ( 1 , p ) X\sim b(1,p) X∼b(1,p) :
3. 二项分布(0,1分布)\多重伯努利分布(Bernoulli distribution) X ∼ b ( n , p ) X\sim b(n,p) X∼b(n,p):
下面化简中用了二项展开式
(
a
+
b
)
n
=
∑
r
=
0
n
C
n
r
a
n
−
r
b
r
=
n
!
r
!
(
n
−
r
)
!
a
n
−
r
b
r
(a+b)^n=\sum_{r=0}^nC_n^ra^{n-r}b^r=\frac{n!}{r!(n-r)!}a^{n-r}b^r
(a+b)n=∑r=0nCnran−rbr=r!(n−r)!n!an−rbr
4. Possion 分布 X ∼ π ( λ ) X\sim \pi(\lambda) X∼π(λ)
Taylor 展开 ——> Possion 分布:
分布律:
5. 均匀分布 X ∼ U ( a , b ) X\sim U(a,b) X∼U(a,b):
6. 指数分布 X ∼ E ( λ ) X\sim E(\lambda) X∼E(λ):
[1] 详情可见《概率论与数理统计》,浙大版.