Cannot resolve overloaded method ‘createDataFrame‘

博客讲述了在使用Spark处理数据时遇到的问题,具体是通过定义schema创建DataFrame时出现错误。作者首先读取orc格式数据,进行字段选择和join操作,然后将结果转换为RDD。在创建DataFrame时,由于传入的不是RDD[Row]类型,导致错误。解决方案是将数据转换为Row对象。博客重点讨论了Spark DataFrame的创建过程和问题排查。
摘要由CSDN通过智能技术生成

在spark中利用自己定义schema的方式创建dataframe遇到了rt所示的错误

原因分析:

首先定义rdd

val dCom = spark.read.orc(pth1+"/202006")
      .select("uid","publish_time","content_length")
      .join(isTrueUser, Seq("uid"))
      .rdd.map(row =>{
      val uid = row.getAs[String]("uid")
      val dtime = row.getAs[String]("publish_time")
      val dlength = row.getAs[Long]("content_length").toInt
      (uid, dtime, dlength, 0, "0")
    })

定义schema数据类型

val commSchema = StructType(List(
      StructField("uid", StringType, nullable = true),
      StructField("time", StringType, nullable = true),   
      StructField("length", IntegerType, nullable = true),
      StructField("topic", IntegerType, nullable = true),
      StructField("type", StringType, nullable = true)
    ))
    val df = spark.createDataFrame(dCom, commSchema)

最后出现rt所示的错误,最后发现在createDataFrame方法中第一个参数传入的是RDD[Row]形式的,于是在定义rdd中将(uid, dtime, dlength, 0, "0")修改为Row(uid, dtime, dlength, 0, "0")就可以了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值