2017年天梯赛大区赛题集 7-13 非常弹的球 (30 分)(物理)

该博客介绍了如何计算一个在特定条件下以一定角度抛出的小球在考虑动能损失情况下的最远投掷距离。森森是一名高一学生,通过简化物理环境,他想知道在给定小球质量、初动能、重力加速度和动能损失率下,小球能弹多远。文章详细解析了问题的数学模型,提供了公式和解题思路,最终通过编程模拟得出答案。
摘要由CSDN通过智能技术生成

刚上高一的森森为了学好物理,买了一个“非常弹”的球。虽然说是非常弹的球,其实也就是一般的弹力球而已。森森玩了一会儿弹力球后突然想到,假如他在地上用力弹球,球最远能弹到多远去呢?他不太会,你能帮他解决吗?当然为了刚学习物理的森森,我们对环境做一些简化:

  • 假设森森是一个质点,以森森为原点设立坐标轴,则森森位于(0, 0)点。
  • 小球质量为w/100 千克(kg),重力加速度为9.8米/秒平方(m/s^{2}​​)。
  • 森森在地上用力弹球的过程可简化为球从(0, 0)点以某个森森选择的角度ang (0<ang<π/2) 向第一象限抛出,抛出时假设动能为1000 焦耳(J)。
  • 小球在空中仅受重力作用,球纵坐标为0时可视作落地,落地时损失p%动能并反弹。
  • 地面可视为刚体,忽略小球形状、空气阻力及摩擦阻力等。

森森为你准备的公式:

  • 动能公式:E=m×v^{2}​​/2
  • 牛顿力学公式:F=m×a
  • 重力:G=m×g

其中:

  • E - 动能,单位为“焦耳”
  • m - 质量,单位为“千克”
  • v - 速度,单位为“米/秒”
  • a - 加速度,单位为“米/秒平方”
  • g - 重力加速度

输入格式:

输入在一行中给出两个整数:1≤w≤1000 和 1≤p≤100,分别表示放大100倍的小球质量、以及损失动力的百分比p。

输出格式:

在一行输出最远的投掷距离,保留3位小数。

输入样例:

100 90

输出样例:

226.757

题意:

给定小球的动能,质量,和损失的动力百分比p,并以某一角度向上抛出小球,小球在碰撞的过程会损失p%的动能,问小球最长的水平距离是多少

思路:

我们可以先求出水平距离的表达式(在不计算动能损失的情况下)

联立 len=v_{x} tv_{y} = gtv_{x} = v \cos \thetav_{y} = v\sin \thetaW = \frac{1}{2}mv^{2},得 len = \frac{W\sin 2\theta }{mg}

又 \theta \in \left ( 0, \frac{\pi }{2}\right ),故当 \theta = \frac{\pi }{4} 时,长度取到最大值

最后就是简单地模拟小球弹跳的过程了,每次碰撞动能W都会损失p%,随后累加水平距离

注意最后的精度要求,保留三位小数,动能小于1e-8认为已经是零了,防止卡精度(第二个测试点)

并且由于上抛过程和下落的过程是对称的,都有水平移动,所以最后的距离需要再乘上2

代码:

//7-13 非常弹的球 (30 分)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
	double m , p;
	cin>>m>>p;
	m /= 100 , p /= 100;			//化为正确的形式 
	
	double w = 1000 , len = 0;		//初始话动能和总距离 
	while(w > 1e-8)					//防止double卡精度 
	{
		len += w / (m * 9.8);		//带入距离公式 
		w *= (1 - p);				//动能损失 p%  
	}
	
	printf("%.3lf\n" , 2 * len);	//上抛和下降是对称的,距离需要 * 2 
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值