自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(343)
  • 资源 (15)
  • 问答 (4)
  • 收藏
  • 关注

原创 江湖路远,代码为剑:2025,我与 AI 的问道之旅

《AI炼丹师的成长之路:从技术小白到万粉博主的蜕变》 本文记录了作者从计算机专业新生到AI领域万粉博主的成长历程。文章通过六个章节,详细分享了作者在学术、竞赛、科研和博客创作方面的经验:1)本科阶段通过死记硬背攻克编程难关,实现专业第一的逆袭;2)参与多项国家级科研项目,发表6篇论文的科研心得;3)对机器学习和深度学习的专业理解,强调特征工程的重要性;4)CSDN年度创作数据(120篇原创,11万+阅读)及内容优化建议;5)平衡学术与生活的实用技巧;6)2026年在学术研究、博客质量等方面的规划目标。作者以

2026-01-01 21:10:27 2214 51

原创 PyTorch深度学习实战 |手算ViT(Vision Transformer)模型

本文详细介绍了Vision Transformer (ViT) 的核心思想、网络结构及PyTorch实现。ViT将图像分割为多个patch,通过Transformer编码器提取全局特征,最终使用简单的分类头预测类别。文章解析了ViT的三个主要模块:图像块嵌入(PatchEmbedding)、位置嵌入(PositionalEmbedding)和分类token(CLSToken),并提供了完整的PyTorch实现代码。通过多头自注意力机制和残差连接,ViT能够有效捕捉图像中的长距离依赖关系。实验部分展示了ViT

2025-11-27 13:54:21 1259 10

原创 PyTorch深度学习实战 | 手算生成对抗网络GAN

本文介绍了生成对抗网络(GAN)的核心原理与实现方法。GAN通过生成器与判别器的对抗训练,最终生成高质量数据。文章详细讲解了GAN的网络结构:生成器采用转置卷积逐步上采样,将噪声转换为图像;判别器通过卷积网络判断图像真伪。作者给出了完整的PyTorch实现代码,包括网络结构定义、训练过程和损失计算。特别展示了单张图片的训练流程,通过最小化判别器对假图像的识别能力来优化生成器,同时训练判别器准确区分真假图像。实验结果表明,经过对抗训练后,生成器能够产生逼真图像,判别器也能有效分辨真伪。

2025-11-14 18:32:52 981 2

原创 PyTorch深度学习实战 | 手算卷积网络(Resnet-18)

本文介绍了ResNet-18残差网络的基本原理与实现。ResNet通过引入残差连接解决深度神经网络训练中的梯度消失和退化问题,允许信息在网络中跳跃传播。文章详细解析了ResNet-18的架构,包含四个stage和BasicBlock残差模块的设计,解释了跳跃连接在不同输入输出通道数情况下的处理方式。通过代码示例展示了BasicBlock的实现细节,包括1×1卷积调整通道数的机制。最后给出了完整的ResNet-18实现代码,包含卷积层、批归一化、残差块堆叠等关键组件,并演示了网络的测试过程。该实现能有效处理3

2025-11-13 16:45:34 1079 1

原创 图解人工智能的数学基础(信息论)

本文介绍了信息论中的核心概念:熵、相对熵和交叉熵。通过抽奖箱和天气预测的实例,详细说明了熵的计算方法及其表示不确定性的特性。相对熵用于衡量两个概率分布的差异,而交叉熵则是机器学习中常用的损失函数。文章提供了Python代码实现这些概念的数学计算,并以图片分类为例展示了softmax函数在多分类任务中的应用。这些概念在人工智能和机器学习领域具有重要作用。

2025-11-06 08:52:44 1379

原创 PyTorch深度学习实战 |手算​​变分自编码器(VAE)

本文介绍了变分自编码器(VAE)的原理与实现。传统自编码器的潜在空间缺乏规律性,无法有效生成新样本。VAE通过引入变分推断,将输入编码为高斯分布的均值和方差,并强制潜在空间接近标准正态分布,从而解决这一问题。文章详细推导了VAE的损失函数(重构损失+KL散度),展示了网络结构与实现代码,包括重参数化技巧。最后通过可视化对比了VAE潜在分布与标准正态分布,解释了KL散度在保证潜在空间连续性和可插值性中的作用。完整代码和可视化结果展示了VAE从4维输入到2维潜在空间的映射过程。

2025-11-01 16:29:14 1067

原创 PyTorch深度学习实战 |手算​​自编码Autoencoder

本文介绍了自编码器的原理与应用。自编码器是一种通过编码-解码结构学习数据压缩表示的神经网络,其核心价值在于提取关键特征。文章详细讲解了自编码器的三部分结构(编码器、潜在空间、解码器)及其训练方法,通过最小化重建误差来优化模型。作者提供了手算模拟示例和Python代码实现,展示了如何将4维输入压缩至2维潜在空间再重建的过程。此外,文章还演示了自编码器在MNIST数字分类任务中的应用,通过3维潜在空间可视化展示了不同数字的分布特征。该技术可应用于数据降维、特征提取等场景。

2025-10-28 17:57:30 662

原创 图解人工智能的数学基础(概率论)

🌞欢迎来到人工智能的世界🌟本文由卿云阁原创!📆首发时间:🌹2024年6月9日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!🙏本书是自己写的哦,因为编辑太麻烦啦,很多地方就粘贴了图片,如果需要电子版的可以私信哈。​随机事件和概率。

2024-10-05 21:22:52 2116

原创 图解人工智能的数学基础(线性代数)

初等行变换对应于在几何上进行基本的几何操作,例如缩放、旋转、平移等。这些操作不会改变变换的本质特性。

2024-06-09 15:31:28 2428 4

原创 人工智能初识

人工智能是延伸人的智能的的科学。目标是使计算机像人一样思考,甚至超过人的智能。

2024-05-29 23:01:23 2051 1

原创 图解人工智能的数学基础(高数)

🙏本书是自己写的哦,因为编辑太麻烦啦,就粘贴了图片,如果需要电子版的可以私信哈。🙏作者水平很有限,如果发现错误,请留言轰炸哦!📆首发时间:🌹2021年3月12日🌹。✉️希望可以和大家一起完成进阶之路!🌞欢迎来到人工智能的世界。🌟本文由卿云阁原创!

2024-05-29 17:25:55 957

原创 Matlab数学建模(重点内容复习)

本文介绍了MATLAB在智能优化算法中的基础应用,涵盖矩阵运算、数组索引、向量化编程、微分方程求解和参数拟合等核心内容。重点讲解了矩阵加减乘除、转置求逆等运算,以及数组索引技巧和向量化编程方法。同时详细展示了集中参数模型的微分方程求解,包括解析解和数值解的实现步骤。此外,还介绍了polyfit和lsqcurvefit两种参数拟合方法,并给出实际应用案例。最后,文章演示了微分方程组的求解方法,为读者提供了全面的MATLAB算法实现指导。

2026-01-09 11:41:56 669 2

原创 AI+Water|带你工艺认知到单个池子单个组分的实现

本文介绍了污水处理厂AAO工艺及其ASM1模型的应用。AAO工艺通过厌氧-缺氧-好氧三区串联实现脱氮除磷,核心控制参数包括溶解氧、内外回流比和剩余污泥排放。ASM1模型通过13个状态变量和8个生化反应方程,定量描述了微生物降解污染物的动态过程。文章详细解析了ASM1的化学计量常数和动力学参数,并以氨氮为例演示了反应速率计算和数值模拟方法。通过Python代码实现了单池氨氮浓度变化的动态模拟,展示了工艺参数对处理效果的影响。该模型为污水处理厂优化运行提供了理论依据和计算工具。

2026-01-07 15:33:36 820 2

原创 大白话PLC(以污水厂的曝气调节为例)

《PLC工程师的"七步走"开发全流程》 本文详细介绍了PLC工程师开发工业控制系统的七个关键步骤: 整理IO表(硬件信号与地址对应) 硬件组态(配置PLC及其扩展模块) 逻辑编程(使用梯形图实现控制逻辑) 制作HMI界面(可视化操作界面) 离线仿真测试(虚拟验证程序) 现场调试(设备联调) 验收培训(交付使用) 文章特别强调AI技术在控制逻辑中的应用方式,并分析了当前工业现场常见的三种溶解氧调控方式,指出实际项目中自动控制失效的常见原因。最后介绍了两个智能曝气的实际应用案例。

2026-01-07 10:36:57 963 2

原创 活性污泥法(ASM学习路线图和实战)

🌞欢迎来到的世界🌟本文由卿云阁原创!🌠本阶段属于练气阶段,希望各位仙友顺利完成突破📆首发时间:🌹🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!

2026-01-05 10:40:41 648 2

原创 PyTorch深度学习实战 |AI学习路线图

本文提出了AI算法工程师的五重境界划分:从掌握基础工具(武夫)到开创全新领域(神游玄境)。作者详细规划了五个阶段的学习路线:1)数学与Python基础;2)传统机器学习;3)深度学习核心;4)八大工程实战;5)前沿领域探索。每个阶段包含核心知识点(如微积分、PyTorch、Transformer等)和实战项目(如GAN生成、ViT识别等),并强调从理论推导到工程部署的全流程能力培养。最后建议选择CV、NLP或多模态等细分领域深入发展。

2026-01-05 10:39:05 914 4

原创 PyTorch深度学习实战 |一文带你了解AI的入门内容

本文介绍了人工智能领域的核心概念与应用,重点阐述了机器学习和深度学习的基本原理及在地学领域的实践应用。机器学习部分详解了监督学习(分类、回归)和无监督学习(聚类、降维)的区别与典型工作流程,强调其"软测量"的本质特征。深度学习部分剖析了神经网络的特征提取机制,列举了CNN、RNN、GNN等多种网络结构及其在地质图像识别、测井预测等场景的应用案例。文章还探讨了AI的三大应用领域(计算机视觉、自然语言处理、多模态融合)及其地质实践价值,提出了"数据表示-模型协同-多模态融合&quo

2026-01-04 21:46:46 868 2

原创 2025年年度论文阅读整理(污水厂出水预测和优化)(下篇)

本文摘要合集聚焦机器学习在污水处理厂(WWTP)优化中的应用研究。主要内容包括:1)多目标进化算法优化污水处理厂与人工湿地组合系统,实现能耗降低27%或成本减少44%;2)多智能体强化学习(MARL)自主校准活性污泥模型(ASM),使COD和TN建模误差分别降低87%和58%;3)XGBoost模型优化生态组合塘系统,实现TN浓度降低17.5%且年碳减排788吨;4)特征选择算法揭示TN、COD和流量是影响能耗的关键因素;5)混合TCN-LSTM模型提升出水TN预测精度33.1%;6)Optuna框架自动化

2026-01-02 19:02:47 629 1

原创 2025年年度论文阅读整理(污水厂出水预测和优化)(上篇)

本文综述了污水处理工艺优化中的多种智能方法与应用。研究重点包括:1)基于贝叶斯优化的XGBoost预测模型结合SHAP可解释性分析,实现出水水质与能耗的多目标优化(NSGA-II+TOPSIS),能耗降低1.55%;2)信号分解与动态特征选择的混合深度学习模型,COD/BOD5预测R²达0.88-0.96;3)机理模型特征提取方法将参数校准时间从939秒降至87秒;4)蚁狮优化算法结合深度置信网络,能耗降低3.31%;5)系统动力学模型揭示极端天气使营养负荷增加20%。这些方法通过机器学习、优化算法和动态控

2026-01-02 16:35:37 763 1

原创 论文阅读 | 污水处理厂出水预测1

本文摘要: 本研究提出两种混合建模方法提升污水处理厂出水水质预测精度。第一篇论文结合时间卷积网络(TCN)与长短期记忆网络(LSTM),构建TCN-LSTM混合模型,实现总氮浓度的实时预测,相比单一模型准确率提升33.1%。第二篇论文将过程模型(GPS-X)与随机森林算法耦合,建立GPS-X-RF混合模型,对出水铵氮浓度进行长期模拟,确定系数达0.95。两研究均通过变量重要性分析优化输入参数,并验证了混合模型在处理进水波动方面的优势。这些方法为污水处理厂的智能运营提供了有效工具。

2026-01-01 09:48:52 539 1

原创 论文阅读 |对污水处理厂废水预测的增强洞察:基于SHAP的全面深度学习模型解释

本文提出了一种基于LSTM和SHAP方法的污水处理厂出水水质预测模型。研究利用中国北方某大型污水处理厂1年的运行数据,构建了能准确预测COD、TP和TN出水的深度学习模型。通过SHAP分析揭示了不同输入特征和时间维度对预测结果的影响机制,发现关键影响因素存在显著差异和时滞效应。实验结果表明,LSTM模型(R²:0.96/0.95/0.76)优于传统方法,SHAP特征选择能提升预测精度。该研究为污水处理过程建模提供了兼具高精度和可解释性的新方法,有助于优化运行控制。

2025-12-29 16:54:52 623 2

原创 论文阅读|基于机器学习的生态组合塘强化城市污水处理厂脱氮优化

本文提出了一种基于机器学习的优化方法,用于提升采用生态组合塘(ECPs)工艺的城镇污水处理厂的总氮去除效率。研究采集了某污水处理厂三年的运行数据,采用XGBoost模型预测出水总氮浓度(测试集R²=0.911,RMSE=1.283)。通过SHAP分析和部分依赖图确定了关键运行参数优化区间:5区溶解氧5.8-8.8mg/L、7区溶解氧0.3-2.8mg/L、外加碳源1.9-2.3m³/d。开发的图形用户界面实现了工艺参数的持续优化,使出水总氮降低17.50%,年碳源投加量减少33.29%,同时实现年碳减排78

2025-12-29 11:15:25 795

原创 论文阅读 |污水处理厂出水氮预测:可解释机器学习模型与机理模型的比较

【摘要】本研究对比了活性污泥模型(ASM)与6种机器学习模型在污水处理厂出水总氮(TN)预测中的性能。结果表明:1)机器学习模型(特别是XGBoost、LightGBM和随机森林)表现更优,最高R²达0.79,平均相对误差仅7.5%,显著优于ASM模型(R²=0.26);2)SHAP分析揭示回流污泥比、MLSS浓度等关键影响因素,与ASM敏感性分析结果一致;3)研究证实可解释机器学习兼具高精度和透明性,为污水处理智能化提供了新思路。数据来自深圳某AAO工艺污水厂一年的实际运行数据,通过参数校准和特征选择优化

2025-12-28 21:42:21 1003

原创 论文阅读 |TCN&水文预测

本文提出了一种双通道时间序列模型,用于水质预测任务。模型结合了Transformer和TCN网络,分别处理常规水质指标和污染物特征数据。创新点包括:1)采用特征融合机制整合宏观环境和微观污染物信息;2)引入物理损失正则化,将化学反应动力学方程融入损失函数,确保预测结果符合化学原理。实验数据包含7项常规水质指标和9种抗生素污染物特征。模型实现了臭氧浓度和多污染物降解率的联合预测,为水处理工艺优化提供了决策支持。

2025-12-28 12:27:21 1059

原创 【大白话数据分析】搞懂这三种神仙编码(OE/QE/LOOE) + 随机森林,模型精度直接起飞![特殊字符]

本文介绍了三种常用的分类特征编码方法及其应用场景:1)OrdinalEncoder(OE)简单排序编号,适用于有等级关系的数据;2)QuantileEncoder(QE)根据目标值分布分段编码,能平滑异常值;3)Leave-One-OutEncoder(LOOE)采用留一法计算均值,避免数据泄漏。文章推荐将编码后的数据输入随机森林模型,因其能有效处理编码带来的数值偏差,并提供了Python代码实现示例。三种编码方法各具特色,OE适合等级数据,QE擅长处理异常值,LOOE则能提高预测精度,读者可根据具体需求选

2025-12-26 08:55:14 992

原创 PyTorch深度学习实战 |常见层 layer结构的实现和代码实战

本文介绍了PyTorch中常见的7种神经网络层结构及其输入输出逻辑。通过代码示例演示了全连接层(nn.Linear)、卷积层(nn.Conv2d)、LSTM层、GCN图卷积层和Transformer层的使用方法,重点讲解了各层的输入输出维度变换规则。文章以一张海绵宝宝图片为例,详细展示了图像数据的预处理流程,包括使用PIL和OpenCV两种方法读取图片并转换为PyTorch张量的过程。通过"代码+实战"的方式帮助读者理解神经网络层如何对特征进行维度变换,最终实现从原始输入到目标输出的映射

2025-12-25 16:52:20 823 4

原创 PyTorch深度学习实战 |从深度学习入门到项目化的任务(以Alexnet网络花分类任务为例)

本文介绍了PyTorch深度学习实战中的项目化开发方法。作者指出实际项目与玩具数据集的不同之处,强调需要考虑数据标准化、模型保存和实验追踪等工程问题。文章详细讲解了项目化文件结构,包括configs、models、utils等模块的划分,并提供了关键工具函数的实现,如YAML配置加载、模型检查点保存/加载、评估指标计算等。通过一个AlexNet训练示例,展示了如何将模型训练、验证和预测逻辑分离,构建完整的工程闭环。文章强调深度学习实战中80%时间在处理工程问题,只有20%在模型架构上,帮助读者从学习阶段过渡

2025-12-25 12:13:31 1244

原创 论文阅读|利用机器学习深入分析微量元素添加剂在厌氧消化中的关键作用,并指导投加策略的优化

本文提出了一种基于机器学习的厌氧消化系统微量元素添加优化方法。研究构建了包含单种和混合微量元素添加的数据集,采用贝叶斯优化的堆叠集成模型(CatBoost、XGBoost等)实现了高精度预测(R²≈0.95)。通过可解释性分析发现微量元素类型、底物类型和消化时间是影响甲烷产量的关键因素。实验验证表明,优化后的微量元素添加策略可使批次实验甲烷产量提升18.4%,半连续实验系统稳定性显著增强。该研究为厌氧消化系统性能优化提供了新思路。

2025-12-24 20:55:39 902

原创 PyTorch深度学习实战 | 时间序列预测 “小白手册”:让数据自己 “预测未来”

本文介绍了基于PyTorch的LSTM模型在水文时间序列预测中的应用。通过标准化处理2184个时间点的出水量数据,构建120小时历史数据预测未来4小时的"输入-输出"对。模型采用双层LSTM(隐藏层128维)提取时序特征,并通过全连接层映射到预测值。实验比较了不同参数设置,发现24小时时间步长和128维特征表现最佳(R²=0.6846)。进一步测试了GRU、BiLSTM等变体,其中物理神经网络(PINN)通过引入氯衰减物理约束,将R²提升至0.72936。文章详细阐述了数据预处理、模型架

2025-12-23 19:52:23 849

原创 数据不打烊:小白也能看懂的分析干货

《数据分析入门指南》摘要 本文是数据分析系列教程的开篇,作者卿云阁将于2025年12月23日开始连载数据分析相关内容。首期将重点讲解数据分析中的统计学基础知识,为后续进阶内容奠定基础。作者以谦虚的态度表示水平有限,欢迎读者指正错误,希望通过互动交流与读者共同成长。教程将涵盖数据分析的多个方面,后续将有更多实用内容陆续发布。

2025-12-23 13:57:22 278

原创 PyTorch深度学习实战 |物理神经网络

本文介绍了基于PyTorch实现的物理信息神经网络(PINN)方法,用于求解一阶线性衰减系统的常微分方程问题。文章详细讲解了PINN的网络结构设计(包含3层全连接网络和tanh激活函数)、数据生成方法(含噪声的模拟观测数据)以及双约束损失函数(数据损失+物理损失)的构建过程。通过5000轮训练,模型成功拟合了系统状态u(t)=10e^(-2t)的解,并展示了训练损失曲线和预测结果对比图。实验结果表明,PINN能够有效结合观测数据和物理定律,在少量带噪声数据条件下仍能准确预测系统行为。完整代码提供了从模型定义

2025-12-21 16:16:56 720

原创 数据分析---相关分析

本文介绍了相关性分析的常用方法及其应用场景。Pearson相关系数用于衡量两数值变量的线性相关性,取值范围为[-1,1],需满足正态分布假设,且对异常值敏感。非参数相关分析(如Kendall秩相关)适用于非正态数据。偏相关分析通过控制第三方变量,揭示变量间的直接关系。文章还举例说明了普通相关分析可能产生虚假相关,而偏相关能消除干扰。最后介绍了基于距离的相似性度量方法,如欧式距离等。数据分析需结合散点图观察数据分布,并注意相关系数的统计显著性。

2025-12-21 11:00:29 1132

原创 数据分析---方差分析

本文介绍了方差分析的基本原理与应用方法。单因素方差分析通过计算F值来区分组间差异(真实影响)和组内差异(随机误差),并提供了手动计算步骤和Python实现代码。多因素方差分析可同时考察多个因素的影响及其交互作用,通过构建方差分析模型和事后多重比较来评估各因素的显著性。文章还详细讲解了协方差分析用于消除干扰变量的影响,以及非参数方差分析(如Kruskal-Wallis检验)在数据不满足正态性假设时的应用。最后通过实例演示了完整的数据分析流程,包括数据准备、模型构建、结果解读和可视化呈现。

2025-12-20 20:18:22 955

原创 数据分析---均值比较检验

本文介绍了三种常用的t检验方法及其应用场景。单样本t检验用于判断样本均值与已知标准值的差异显著性,需先验证数据正态性;独立样本t检验比较两组独立数据的均值差异,要求满足独立性、正态性和方差齐性条件;配对样本t检验则适用于成对数据的比较,重点考察差值是否服从正态分布。文章通过污水处理案例,详细说明了每种检验的Python实现步骤,包括正态性检验、方差齐性检验等预处理环节,并强调了当数据不满足假设条件时应采用的非参数替代方法。

2025-12-20 15:52:48 902

原创 PyTorch深度学习实战 |Alexnet网络花分类任务项目版本

本文介绍了基于PyTorch的花卉分类实战项目,包含完整的项目架构和代码实现。项目采用AlexNet网络结构,通过YAML配置文件管理参数,实现了模块化开发。文章详细讲解了数据集处理(5类花卉)、模型训练(包含早停机制和学习率调度)、验证评估和预测功能。项目采用YOLOv5风格的目录结构,包含configs、models、utils等模块,支持命令行参数配置。实验结果显示该架构比简单实现准确率提升4%,最终预测功能可输出top-k分类结果及置信度。完整代码已开源,适合深度学习初学者进阶学习。

2025-12-10 20:58:33 1212 2

原创 数据分析---时间序列分析

本文介绍了时间序列分析的基本概念与方法。主要内容包括:1)严平稳与宽平稳的定义及区别,通过天气数据示例说明;2)白噪声序列的特征及其在预测误差中的体现;3)时域分析与频域分析的不同视角和应用;4)时间序列分解为确定性趋势和随机噪声的方法;5)随机序列分析的常用技术(差分、自回归、移动平均等)。文章以超市销售额为例,详细阐述了如何分离确定性规律和随机噪声,并介绍了ARMA模型的核心思想。最后提及了Python实现ARMA算法的实战应用。

2025-12-10 18:52:28 946

原创 PyTorch深度学习实战 |基于Alexnet网络预训练模型完成训练花分类任务实战

本文介绍了使用AlexNet模型进行花卉图像分类的实战过程。首先讲解了数据集的准备方法,包括5类花卉数据(雏菊、蒲公英等)的8:2训练集/验证集划分。详细解析了AlexNet的网络结构(5个卷积层+3个全连接层)及其创新点,如ReLU激活函数和Dropout正则化。提供了完整的PyTorch实现代码,包括模型定义、数据增强和训练流程。实验结果表明,50轮训练后验证集准确率可达80%。文章还介绍了使用预训练模型进行迁移学习的方法,通过修改分类器层并微调参数,可以显著提升训练效率和分类效果。整个项目从数据准备到

2025-12-09 16:07:41 624

原创 PyTorch深度学习实战 |基于变分自编码器(VAE)药物分子生成任务

本文介绍了一个基于变分自编码器(VAE)的分子生成系统。该系统通过编码器将分子图结构(邻接矩阵和特征矩阵)压缩为潜在空间表示,再通过解码器重建分子结构,实现分子生成功能。系统包含数据处理模块(将SMILES字符串转换为图结构)、VAE模型(含编码器、解码器和性质预测器)以及训练流程。模型采用关系图卷积层处理分子结构,并通过多目标损失函数(包括重构损失、KL散度和性质预测损失)进行优化。实验结果表明,该系统能有效生成具有所需性质的分子结构,为药物发现提供了一种新方法。

2025-12-07 18:15:39 661

原创 PyTorch深度学习实战 |基于图注意力网络(GAT)的抑制剂预测任务

本文介绍了基于图注意力网络(GAT)和随机森林(RF)的分子抑制剂预测系统。首先通过SMILES字符串将分子转换为图结构,利用GAT模型的自适应注意力机制进行训练,同时实现了RF版本作为对比。系统使用RDKit计算分子特征,并通过Streamlit构建了可视化交互界面,支持分子结构展示、性质分析和预测结果可视化。实验结果显示GAT模型在抑制剂预测任务中表现良好,最终实现的Web应用可直观展示预测结果及置信度,为药物发现研究提供了便捷工具。

2025-12-07 15:04:26 563

原创 论文阅读|使用交叉注意力图神经网络预测酶特异性

摘要:本研究提出EZSpecificity模型,通过交叉注意力图神经网络预测酶-底物特异性。该模型整合序列信息、复合物结构和活性口袋环境特征,在ESIbank数据集(包含8124种酶和34417种底物)上表现优异。实验采用四折交叉验证,在未知底物、未知酶等场景下均优于现有方法ESP。消融实验证实模型各组件(图注意力、交叉注意力等)均对性能提升有贡献。模型通过ESM编码酶序列,结合GNN处理3D结构,实现酶-底物相互作用的精准预测,为酶工程应用提供了可靠工具。

2025-12-01 14:25:23 786

第7章 函数.pptx初学者教程

C

2021-11-11

MATLAB教程(318页).pdf(免费)

MATLAB教程(免费)

2021-09-20

Matlab基础教程.ppt(免费)

Matlab基础教程.ppt(免费)

2021-09-20

MATLAB快速入门(71页).ppt(免费)

MATLAB快速入门(71页).ppt(免费)

2021-09-20

MATLAB经典超强初级教程(219页).pdf(免费)

MATLAB经典超强初级教程(219页).pdf(免费)

2021-09-20

Matlab经典教程——从入门到精通(281页).pdf(免费)

Matlab经典教程——从入门到精通(281页).pdf(免费)

2021-09-20

华为C语言编程规范和范例.docx(免费)

C

2021-11-11

第一章 基础知识简介.docx

C

2021-11-11

c语言程序设计第二章 (1).docx

C

2021-11-11

第6章 数组.docx-菜鸟入门(清晰版)】

C

2021-11-11

第7章 函数.docx初学者教程

C

2021-11-11

第2章 数据类型、运算符与表达式.pptx

C

2021-11-11

YOLOV5数据集,非常方便的使用

YOLOV5数据集

2022-07-05

数字逻辑.pdf(课后习题答案)

数字逻辑.pdf(课后习题答案)

2022-01-07

matlab教程ppt(全)(410页).ppt.ppt(免费)

matlab教程(免费)

2021-09-20

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除