自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(253)
  • 资源 (15)
  • 问答 (4)
  • 收藏
  • 关注

原创 图解人工智能的数学基础(概率论)

🌞欢迎来到人工智能的世界🌟本文由卿云阁原创!📆首发时间:🌹2024年6月9日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!🙏本书是自己写的哦,因为编辑太麻烦啦,很多地方就粘贴了图片,如果需要电子版的可以私信哈。​随机事件和概率。

2024-10-05 21:22:52 1819

原创 图解人工智能的数学基础(线性代数)

初等行变换对应于在几何上进行基本的几何操作,例如缩放、旋转、平移等。这些操作不会改变变换的本质特性。

2024-06-09 15:31:28 2195 4

原创 人工智能初识

人工智能是延伸人的智能的的科学。目标是使计算机像人一样思考,甚至超过人的智能。

2024-05-29 23:01:23 1900 1

原创 图解人工智能的数学基础(高数)

🙏本书是自己写的哦,因为编辑太麻烦啦,就粘贴了图片,如果需要电子版的可以私信哈。🙏作者水平很有限,如果发现错误,请留言轰炸哦!📆首发时间:🌹2021年3月12日🌹。✉️希望可以和大家一起完成进阶之路!🌞欢迎来到人工智能的世界。🌟本文由卿云阁原创!

2024-05-29 17:25:55 805

原创 污水处理工艺优化1

【研究摘要】污水处理智能优化控制研究取得新进展,多项创新方法显著提升处理效能与可持续性。核心成果包括:1)基于NSMOCS算法的动态优化系统使污染指数和运行成本降低0.6-1.3%;2)集成ASM2d-QL的智能控制策略成功实现AAO系统在负荷波动下的稳定运行;3)新型NMMPC方案结合SORBF神经网络和多梯度优化,展现优异抗干扰能力;4)MIROC方法通过协作成本函数设计,有效应对未知干扰导致的性能下降问题。研究还揭示了DO浓度控制中节能与N₂O排放的权衡关系,提出超低氧曝气作为过渡方案。深度学习方面,

2025-06-26 12:56:37 663

原创 污水处理工艺优化2

本研究提出了一种基于特征提取的污水处理水质预测与优化方法。通过构建包含COD、BOD等5项指标的200样本数据集,采用IVMD算法进行信号分解处理。研究创新性地从关键变量中提取动态特征,建立数据驱动模型,预测准确度显著提升。相比传统ASM2D模型,参数校准时间从939.75秒缩短至87.52秒,能耗最高降低24.3%。方法包含数据预处理、特征提取、模型构建和优化集成四个阶段,采用高斯函数拟合二阶导数特征,并通过动态更新机制增强系统适应性。实验数据来自中国某污水处理厂364天的运行记录,验证了该方法在水质预测

2025-06-16 10:24:28 1646

原创 人工智能在污水处理中的应用

🌞欢迎来到人工智能的世界🌟本文由卿云阁原创!📆首发时间:🌹2025年6月9日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!

2025-06-09 11:35:24 967

原创 污水处理中的整体工艺的调控优化综述

此外,本研究采用NSGA-II(非支配排序遗传算法II)与TOPSIS(逼近理想解排序法)相结合的多目标优化方法,对水处理工艺参数进行了系统优化。通过构建包含水质指标(如COD、氨氮、总磷等)和处理能耗(EC)在内的多目标优化模型,实现了以下优化效果:参数优化过程:首先建立包含8个关键工艺参数(如曝气量、HRT、MLSS等)的决策变量空间采用NSGA-II算法进行多目标优化搜索,经过500代迭代获得Pareto最优前沿运用TOPSIS方法从Pareto解集中筛选出最佳折衷方案优化效果验证

2025-06-04 17:07:48 819

原创 超分辨任务日志(HAT、PFT-SR、SupResDiffGAN)

本文介绍了AI模型训练与测试的实践指南,重点涵盖HAT、PFT-SR和SupResDiffGAN三种模型的运行要点。主要内容包括:1)服务器环境配置,强调路径管理、离线包安装和分布式训练注意事项;2)HAT模型训练流程,涉及数据预处理、多卡训练命令和50小时训练时长;3)PFT-SR模型测试方法,包括单图测试和5卡训练配置;4)SupResDiffGAN超分重建的完整代码实现,详细解析了从低分辨率图像输入到高分辨率输出的处理流程。特别提醒注意路径准确性、网络连接稳定性及正确的程序终止方式。

2025-05-27 16:53:37 907

原创 对污水处理的简单的理解

本文介绍了污水处理中的厌氧氨氧化工艺(ANAMMOX)及其与传统硝化/反硝化工艺的区别。传统工艺通过多步反应将氨氮转化为无害氮气,而ANAMMOX工艺则利用厌氧氨氧化菌直接将氨氮和亚硝态氮转化为氮气,节省了氧气和碳源成本,成为污水处理中的节能技术。文章还详细描述了水污染处理的流程、参数监测及工艺运行中的关键控制点,如水温、pH值、溶解氧等,以确保细菌的高效工作。此外,文章探讨了ANAMMOX细菌与反硝化细菌之间的协同与竞争关系,并介绍了厌氧-缺氧-好氧(AAO)工艺的典型流程。通过这些内容,本文为读者提供了

2025-05-17 13:15:51 1262

原创 SupResDiffGAN:一种超分辨率任务的新方法

本文介绍了SupResDiffGAN,一种结合生成对抗网络(GAN)和超分辨率任务扩散模型的新型混合架构。该模型通过利用潜在空间表示和减少扩散步骤,实现了更快的推理时间,同时保持高感知质量。为防止过拟合,提出了自适应噪声破坏技术。实验表明,SupResDiffGAN在效率和图像质量上优于传统扩散模型,如SR3和I2SB,为高分辨率图像生成的实时应用奠定了基础。文章还详细描述了模型的训练和推理过程,包括使用U-net生成器、鉴别器网络和预训练的变分自编码器(VAE)进行训练,以及如何通过脚本进行模型训练和评估

2025-05-13 10:44:43 634

原创 [CVPR 2025]用于单图像超分辨率的逐行聚焦变压器

本文介绍了一种名为渐进聚焦Transformer(PFT)的模型,用于单图像超分辨率任务。PFT通过渐进聚焦注意(PFA)机制,将网络中孤立的注意图连接起来,逐步聚焦于最重要的特征,从而减少不相关特征之间的相似度计算,降低计算成本。PFA利用前几层的注意力图来加权输入特征,并通过稀疏矩阵乘法(SMM)操作进一步减少计算开销。实验结果表明,PFT在多个单幅图像超分辨率测试平台上取得了领先的性能,且计算复杂度较低。本文还详细介绍了PFT的架构、方法、实验和项目结构,展示了其在高效图像超分辨率任务中的潜力。

2025-05-11 21:46:22 867

原创 HAT(CVPR 2023):基于混合注意力机制的图像重建网络

本文介绍了一种新颖的混合注意力Transformer(HAT)方法,用于单图像超分辨率(SR)任务。HAT结合了通道注意力和基于窗口的自注意力机制,通过引入重叠的交叉注意力模块增强相邻窗口特征之间的交互作用,从而激活更多输入像素以实现更好的重建效果。实验结果表明,HAT在性能上显著优于当前最先进的方法,提升幅度超过1dB。此外,作者采用了相同任务的预训练策略,进一步挖掘了模型的潜力。本文还详细描述了HAT的架构、训练策略和实验结果,展示了其在图像超分辨率任务中的有效性。

2025-05-09 21:46:13 992

原创 【AI环境7】 | 人工智能在空气质量评价技术方法中的应用

🌞欢迎来到的世界🌟本文由卿云阁原创!🌠本阶段属于练气阶段,希望各位仙友顺利完成突破📆首发时间:🌹2025年3月23日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!aaaa​​。

2025-03-23 13:43:54 687

原创 【AI环境6】 | 人工智能在AI天气预报中的应用

🌞欢迎来到的世界🌟本文由卿云阁原创!🌠本阶段属于练气阶段,希望各位仙友顺利完成突破📆首发时间:🌹2025年3月22日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!​。

2025-03-22 20:04:39 1259

原创 【AI环境5】 | SmaAt-UNet:使用SmallAttention UNet架构的降水临近预报

气象预测主要由数值天气预报所主导,它试图准确建模大气的物理特性。数值天气预报的一个不足之处在于它缺乏使用最新可用信息进行短期预报的能力。通过使用基于数据驱动的神经网络方法,我们展示了可以生成准确的降水现在预报。为此,我们提出了SmaAt-UNet,这是一种高效的卷积神经网络,基于众所周知的UNet架构,配备了注意力模块和深度可分离卷积。我们使用荷兰地区的降水图和法国云覆盖的二进制图像对我们的方法进行了评估。实验结果显示,就预测性能。

2025-03-22 12:31:19 1436

原创 【AI环境5】 | AA TransUNet:注意力增强型TransUNet

近年来,基于数据驱动建模的方法在许多具有挑战性的气象应用中引起了广泛关注,包括天气要素预测。本文介绍了一种基于TransUNet的新型数据驱动预测模型,用于降水短时预报任务。TransUNet模型将Transformer和U-Net模型结合在一起,在医学分割任务中已经成功应用。在这里,TransUNet被用作核心模型,并进一步配备了卷积块注意模块(CBAM)和深度可分离卷积(DSC)。提出的模型在两个不同的数据集上进荷兰降水图数据集和法国云覆盖数据集。所得结果显示,提出的模型在两个测试数据集。

2025-03-22 12:13:36 1163

原创 【AI环境4】 | Rainformer:基于雷达的降水临近预报特征提取平衡网络

降水短临预报是自然灾害研究中的基本挑战之一。高强度降雨,尤其是暴雨,会导致人们财产的巨大损失。现有方法通常利用卷积操作提取降雨特征,并增加网络深度以扩展感受野以获得虚假的全局特征。虽然这种方案简单,但只能提取局部降雨特征,导致对高强度降雨不敏感。本文提出了一种名为Rainformer的新型降水短临预报框架,其中提出了两个实用组件:全局特征提取单元和门控融合单元(Gate Fusion Unit, GFU)。

2025-03-21 16:58:42 1161

原创 【AI环境3】 | 使用改进的集成卡尔曼滤波对排放控制期间 CO 和 NOx 减排量进行高时空分辨率逆估计

政府和环保部门常常采用减排措施(比如限制工厂排放、交通管控等)来改善空气质量。但是,这些措施实际减少了多少污染排放(例如CO和NOx),一直存在较大的估计不确定性。传统上,利用集合卡尔曼滤波(EnKF)来反演排放量是一种有效手段。其基本流程是用多次大气化学模式模拟(也就是说运行几十次模拟)来计算排放源与观测数据之间的误差协方差矩阵,然后调整排放数据。但这种方法计算量大,容易出问题(比如滤波器发散),因此不适合实时预报系统。

2025-03-20 16:36:27 1147

原创 【AI环境2】 | 一种基于集合最优插值的排放源快速反演方法

在空气质量模拟和预报中,污染源排放量是一个关键因素。传统的**集合卡尔曼滤波(Ensemble Kalman Filter, EnKF)**方法能够利用观测数据来反演排放源,从而提高预报精度。需要运行几十次大气化学传输模式(CTM),计算量巨大,难以用于实时更新排放源。因此,本研究提出了一种新的方法,即基于集合最优插值(Ensemble Optimal Interpolation,EnOI)的排放源反演方法,它能够显著减少计算量,使排放源更新更快速、更高效。传统方法(EnKF)的计算难点。

2025-03-19 16:52:28 732

原创 【AI环境1】 | 基于逆向更新排放的中国空气质量预测

传统的方法是什么空气质量的预测,最重要的输入数据之一就是“污染源清单”,也就是告诉我们有哪些地方在排放污染物、排放了多少。传统的方法是“自下而上”的,就是从工厂、汽车、燃烧煤炭等各种排放源收集数据,然后汇总成一个完整的清单。存在的问题但是,这个过程太麻烦了,不仅需要大量的信息,还要花费很长时间,可能一年才能更新一次。而现在空气污染源的变化很快,比如新工厂开工、环保政策调整等,老数据就会不准确,导致预测的空气质量也不准。提出的方法研发了一种能实时更新污染源清单的新方法。它基于ChemDAS系统。

2025-03-18 20:38:37 688

原创 人工智能和生物信息学

🙏作者水平很有限,如果发现错误,请留言轰炸哦!✉️希望可以和大家一起完成进阶之路!🌞欢迎来到机人工智能器学习的世界。📆首发时间:🌹2025年3月5日🌹。🌟本文由卿云阁原创!

2025-03-05 17:05:43 906

原创 神经形态视觉传感器件

🙏作者水平很有限,如果发现错误,请留言轰炸哦!✉️希望可以和大家一起完成进阶之路!📆首发时间:🌹2025年3月5日🌹。🌞欢迎来人工智能机器学习的世界。🌟本文由卿云阁原创!

2025-03-05 16:54:59 690

原创 人工智能赋能纳米分辨CT表征技术应用于新型纳米药物研发

🌞欢迎来到人工智能的世界🌟本文由卿云阁原创!📆首发时间:🌹2025年3月5日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!

2025-03-05 16:42:04 1152

原创 关于数学的十万个为什么

函数可以分成很多种,下面重点讲4个函数。

2025-02-15 20:10:36 684

原创 Pytorch深度学习实战

🌞欢迎来到深度学习实战的世界🌈博客主页:卿云阁🌟本文由卿云阁原创!📆首发时间:🌹2025年2月12日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!

2025-02-12 20:49:31 520

原创 PyTorch深度学习实战 | 基于RNN的情感识别任务

是一种用于处理序列数据的神经网络模型,特别适用于处理时间序列、语音、文本等具有顺序关系的数据。简单的神经网络都是水平方向的延申,RNN可以关联不同的时刻,RNN的输出不仅取决于当前时刻的输出还取决于上一时刻隐藏层的输出。(神经网络具有某种记忆的能力)举个例子(使用RNN进行情感分类)

2025-02-12 20:31:08 630

原创 PyTorch深度学习实战 | 基于GCN 的抑制剂预测任务

图神经网络(Graph Neural Network,GNN)是一种专门用于处理图结构数据的深度学习方法。与传统的神经网络主要处理规则结构的数据(如图像和文本)不同,GNN能够处理各种不规则的数据结构,如社交网络、分子结构等。GNN通过在图上定义节点之间的连接关系,利用节点的邻居信息来更新节点的表示,实现对整个图的信息传递和学习。

2025-02-10 18:09:48 1326

原创 PyTorch深度学习实战 | 基于GAN 的小狗图像生成任务

🌞欢迎来到机器学习的世界🌟本文由卿云阁原创!🌠本阶段属于练气阶段,希望各位仙友顺利完成突破📆首发时间:🌹2021年3月12日🌹✉️希望可以和大家一起完成进阶之路!🙏作者水平很有限,如果发现错误,请留言轰炸哦!

2025-02-09 21:15:57 889

原创 PyTorch深度学习实战 | Transformer模型的实现

Transformer 是一种基于自注意力机制(Self-Attention)的深度学习模型,最初由 Vaswani 等人在 2017 年提出,主要用于自然语言处理(NLP)任务。它的核心思想是通过自注意力机制来捕捉序列中各个词之间的依赖关系,避免了传统 RNN 或 LSTM 中序列化计算的限制,能够实现更高效的并行化计算。

2025-02-08 19:32:29 976

原创 PyTorch深度学习实战 | 基于LSTM和Seq2Seq的机器翻译实战

是一种用于处理序列数据的神经网络模型,特别适用于处理时间序列、语音、文本等具有顺序关系的数据。简单的神经网络都是水平方向的延申,RNN可以关联不同的时刻,RNN的输出不仅取决于当前时刻的输出还取决于上一时刻隐藏层的输出。(神经网络具有某种记忆的能力)举个例子(使用RNN进行情感分类)是一种特殊类型的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时面临的梯度消失问题。LSTM 引入了特殊的结构(称为“门”)来控制信息的流动,能够更好地捕捉长期依赖关系。(简单的RNN在信息记忆方面效果不好)

2025-02-08 16:56:22 960

原创 PyTorch深度学习实战 | 基于​​自编码 (Autoencoder)的数字分类

自编码器是一种神经网络,它的作用是自动学习数据的压缩表示(也叫编码),然后再把它还原回去。听起来有点像“数据复印机”,但它的真正价值在于能够提取数据中的关键特征。你可以把它想象成:一个会画画的机器人:它看了一张图,记住其中最重要的部分,然后再凭记忆把它画出来。

2025-02-07 14:12:19 880

原创 PyTorch深度学习实战 | 基于卷积网络(Resnet-18)的水质分类系统

在深度学习的世界里,我们经常会听到一个问题:网络越深,效果一定越好吗? 其实,答案是否定的!如果你直接把网络层数加深,模型的训练反而可能变得更难,甚至出现梯度消失 或 退化问题(深度越大,训练效果可能反而变差)。 ResNet(Residual Network,残差网络)就是为了解决这个问题而诞生的,它的核心思想是加一条“捷径”,让数据可以跳跃传播!。 ResNet-18 是 ResNet 家族 的一员,它的数字 “18” 指的是网络总共有 18 层(主要是包含可学习参数的

2025-02-06 22:20:29 1093

原创 PyTorch深度学习实战 | 基于神经网络的水质分类系统

定义模型x = x.view(x.size(0), -1) # 展平成 (batch_size, 3072)x = self.fc3(x) # 输出return x输入数据 (x: 形状为 (batch_size, 3, 32, 32), 需要展平为 (batch_size, 3072).第一层全连接 (fc1: 输入 (batch_size, 3072),输出 (batch_size, 128).ReLU 激活 (relu: 形状保持不变 (batch_size, 128).第二层全连接 (

2025-02-05 17:25:35 1071 2

原创 图解入门Pytorch

什么是PyTorch?PyTorch 就像是深度学习的“工具箱”: 就像你做饭需要锅、铲子、刀和菜一样,做深度学习就需要工具。而 PyTorch 就是那个专门为做深度学习准备的“工具箱”。它提供了很多现成的工具和操作,让你做人工智能的研究或开发变得更简单、快捷。优点:能跑在 GPU 上,速度超级快: 训练深度学习模型很耗计算力,PyTorch 能自动使用你的显卡(GPU)来加速计算。如果你有 GPU,PyTorch 可以帮你大大提高训练速度,不需要你去做特别复杂的设置。自动求导帮你“自己学”

2025-01-24 20:27:11 1193

原创 图解入门Matplotlib

可视化是在整个数据挖掘的关键辅助工具,可以清晰的理解数据,从而调整我们的分析方法。

2025-01-23 19:44:00 819

原创 图解入门Numpy

NumPy 是一个运行速度非常快的数学库,主要用于数组计算。NumPy中最核心的数据结构是ND array,表示N维数组。数组中的数据类型要统一大规模的数学运算时,运行速度快提供了很多数据运算的函数比如平均值和标准差等等深度学习中为啥经常用到numpy?轻松处理大数据深度学习的模型通常需要处理非常大的数据,比如图像、音频、文本等。这些数据通常会用数组或矩阵表示。NumPy让这些数据的处理变得很简单,因为它提供了一个叫做“ndarray”的数组,能够快速存储和操作这些数据。

2025-01-22 19:14:27 880

原创 图解 Python 编程系列

🌞欢迎来到Python的世界🌟本文由卿云阁原创!📆首发时间:🌹2025年1月21日🌹🙏作者水平很有限,如果发现错误,请留言轰炸哦!

2025-01-21 21:27:13 173

原创 图解 Python 编程(7) | Python面向对象的程序设计

🌞欢迎来到Python的世界🌟本文由卿云阁原创!📆首发时间:🌹2025年1月21日🌹🙏作者水平很有限,如果发现错误,请留言轰炸哦!​面向过程和面向对象:突然想吃番茄炒蛋面向过程的做法:1.去买番茄和鸡蛋2.洗番茄,打鸡蛋3.放油,煎鸡蛋,把煎好的鸡蛋放到盘子里。4.开始炒番茄5.放在一起炒面向对象的做法: 点外卖​。

2025-01-21 18:59:12 1095

原创 图解 Python 编程(6) | Python函数编程

🌞欢迎来到Python的世界🌟本文由卿云阁原创!📆首发时间:🌹2025年1月21日🌹🙏作者水平很有限,如果发现错误,请留言轰炸哦!​。

2025-01-21 18:48:39 654

第7章 函数.pptx初学者教程

C

2021-11-11

MATLAB教程(318页).pdf(免费)

MATLAB教程(免费)

2021-09-20

Matlab基础教程.ppt(免费)

Matlab基础教程.ppt(免费)

2021-09-20

MATLAB快速入门(71页).ppt(免费)

MATLAB快速入门(71页).ppt(免费)

2021-09-20

MATLAB经典超强初级教程(219页).pdf(免费)

MATLAB经典超强初级教程(219页).pdf(免费)

2021-09-20

Matlab经典教程——从入门到精通(281页).pdf(免费)

Matlab经典教程——从入门到精通(281页).pdf(免费)

2021-09-20

华为C语言编程规范和范例.docx(免费)

C

2021-11-11

第一章 基础知识简介.docx

C

2021-11-11

c语言程序设计第二章 (1).docx

C

2021-11-11

第6章 数组.docx-菜鸟入门(清晰版)】

C

2021-11-11

第7章 函数.docx初学者教程

C

2021-11-11

第2章 数据类型、运算符与表达式.pptx

C

2021-11-11

YOLOV5数据集,非常方便的使用

YOLOV5数据集

2022-07-05

数字逻辑.pdf(课后习题答案)

数字逻辑.pdf(课后习题答案)

2022-01-07

matlab教程ppt(全)(410页).ppt.ppt(免费)

matlab教程(免费)

2021-09-20

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除