设dp[i][y]表示一个点在x[i],另一个点在y时最小要走的步数
那么有以下转移
对于y != x[i-1]的状态,可以证明,他们直接加|x[i] - x[i-1]|即可(如果有其他方案,不符合对dp的定义)
当y == x[i-1]时,它可以由其他所有状态转移过来, dp[i][x[i-1]] = min(dp[i][y] + |y - x[i]|)
把绝对值拆出来,就是需要维护一个dp[i][y] + y 和dp[i][y] - y,建立两个线段树即可。
然而调了一个下午+一个晚上
错误在哪里(待找)
莫名其妙改对
#include<bits/stdc++.h>
using namespace std;
const int N=3000000;
long long n,m,a1,b1,i,tmp,ans;
long long p[N],p1[N],s[N],s1[N],a[N];
void add(long long k,long long zhi)
{ p[k]+=zhi; s[k]+=zhi; p1[k]+=zhi; s1[k]+=zhi;}
void update(int x,int k)
{ add(x*2,s1[x]);
add(x*2+1,s1[x]);
s1[x]=0; p1[x]=0;}
void renew(int x)
{
p[x]=min(p[x*2],p[x*2+1]);
s[x]=min(s[x*2],s[x*2+1]);
}
void getmin(int q,int l,int r,int pos,long long zhi)/注意long long/
{
update(q,2);
if (l==r)
{ p[q]=1ll*zhi+pos; s[q]=1ll*zhi-pos; return;}
int mid=(l+r)/2;
if (pos<=mid) getmin(q*2,l,mid,pos,zhi);
else getmin(q*2+1,mid+1,r,pos,zhi);
renew(q);
}
long long query(int q,int l,int r,int x,int y,int k)
{
if (x>y) return 1e18;
if ((x<=l)&&(r<=y)) { return (k)? p[q]:s[q];}
else
{ update(q,k);
int mid=(l+r)/2;
if (x>=mid+1) return query(q*2+1,mid+1,r,x,y,k);
else if (y<=mid) return query(q*2,l,mid,x,y,k);
else return(min(query(q*2+1,mid+1,r,mid+1,y,k),query(q*2,l,mid,x,mid,k))); }
}
int main()
{
cin>>n>>m>>a1>>b1;
for (int i=1;i<=m;i++)
scanf("%d",&a[i]);
memset(p,0x3f,sizeof(p));
memset(s,0x3f,sizeof(s));
getmin(1,1,n,a1,0); a[0]=b1;
for (int i=1;i<=m;i++)
{
tmp=min(query(1,1,n,1,a[i],0)+a[i],query(1,1,n,a[i]+1,n,1)-a[i]);
add(1,abs(a[i]-a[i-1]));
getmin(1,1,n,a[i-1],tmp);
}
ans=1e18;
for ( i=1;i<=n;i++)
{ans=min(ans,query(1,1,n,i,i,0)+i); }
cout<<ans<<endl;
}