洛谷P1002 [NOIP2002 普及组] 过河卒题解

这篇博客介绍了如何解决NOIP2002普及组的过河卒问题,通过动态规划和滚动数组优化计算卒从A点到B点避开马的路径数量。讨论了坐标变换、动态规划方程、滚动数组的应用以及如何处理马的位置限制,最终将原O(n^2)空间复杂度优化至O(n)。
摘要由CSDN通过智能技术生成

题目描述

棋盘上 AA 点有一个过河卒,需要走到目标 BB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,AA 点 (0, 0)(0,0)、BB 点 (n, m)(n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个正整数,分别表示 BB 点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

输入输出样例

输入 #1

6 6 3 3

输出 #1复制

6

说明/提示

对于 100 \%100% 的数据,1 \le n, m \le 201≤n,m≤20,0 \le0≤ 马的坐标 \le 20≤20。

【题目来源】

NOIP 2002 普及组第四题

题解:

这道题初始位置是从 0 开始的,这样不是很利于我们解题,所以不如暂且把这题里涉及的坐标统统 +1,那么初始位置就从 (0,0)(0,0) 变成了 (1,1)(1,1)。

先考虑如果没有任何马的限制,卒子可以随便向右向下走,那么可以想到,一个卒子只能从 当前格子的左侧格子 和 当前格子的上方格子 上走到当前格子。那么假设从 (1,1)(1,1) 走到 当前格子的左侧格子 的路径条数是 xx,从 (1,1)(1,1) 走到 当前格子的上方格子 的路径条数是 yy,那么从 (1,1)(1,1) 走到当前格子的路径条数就应该是 x+yx+y。

其实我们已经得到了一个动态规划的转移方程,设 f(i,j)f(i,j) 表示从 (1,1)(1,1) 格子走到当前格子的路径条数,那么根据上一段得到的结论,可以得到:

f(i,j) = f(i-1,j) + f(i,j-1)f(i,j)=f(i−1,j)+f(i,j−1)

(i,j)(i,j) 是当前格子,那么 (i-1,j)(i−1,j) 就是 当前格子的上方格子,(i,j-1)(i,j−1) 就是 当前格子的左侧格子。我们只需要从小到大依次枚举 ii 和 jj 就能获得所有点的答案,可以想到,在这道题里我们要求的答案就是 f(n,m)f(n,m)(因为 B 点的坐标是(n,m)(n,m))。

当然如果只是按照这个公式推肯定不行,因为 ff 的初始数值都是 0,再怎么推也都是 0,我们要让 f(1,1)f(1,1) 能根据上面得到的式子推出答案是 1,这样才能有有意义的结果。根据 f(1,1)=f(0,1)+f(1,0)f(1,1)=f(0,1)+f(1,0),我们只需要让 f(1,0)=1f(1,0)=1 或者 f(0,1)=1f(0,1)=1 即可。

接下来考虑一下加入了 马 这道题该怎么做,假设 (x,y)(x,y) 这个点被马拦住了,其实就是说这个点不能被卒子走到,那当我们枚举到这个点的时候,发现他被马拦住了,那就直接跳过这个点,让 f(x,y)=0f(x,y)=0 就行了。

具体写代码的时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值