📌 一、项目背景
随着后厨监管与食品安全的重视,传统监控系统已经难以满足管理层对「实时、智能、高效、远程」的需求。
本项目模拟连锁餐饮品牌「外婆家」的后厨监控平台,聚焦以下核心目标:
-
实时多路监控与状态反馈
-
录像回放与追溯能力
-
AI 识别明火、未佩戴口罩等行为
-
良好的可扩展性,支持上万路并发
-
支持本地部署与云端对接
🎯 二、功能总览
✅ 实时多分屏预览
-
支持 1/4/9/16 分屏显示
-
实时码率、状态展示
-
可点击任意画面放大查看
✅ 录像回放
-
每个摄像头提供时间段检索
-
可回放录像文件
.mp4
-
播放器支持暂停/进度控制
✅ AI 异常行为识别(接入阿里云 EasyCV)
-
检测未戴口罩、抽烟等违规行为
-
异常截图存储、报警提示
✅ 后台管理
-
摄像头分组管理(洗菜区、冷藏室等)
-
异常日志记录
-
权限分配(管理员/店长)
🧱 三、系统架构设计
📐 架构图展示
整体采用「前后端分离 + 嵌入式流媒体 + 云端 AI 服务」方案,分为:
层 | 技术 | 功能 |
---|---|---|
展现层 | Vue3 + Element Plus + flv.js | 前端界面 + 视频播放 |
通讯层 | WebSocket、HTTP | 状态推送、视频列表获取 |
服务层 | Node.js + Express + SRS | 录像服务、AI 接口、中转服务 |
数据层 | MySQL + Redis + Nginx 视频目录 | 存储元数据、缓存、视频访问 |
🚀 四、关键技术亮点
🎥 SRS 推流服务器
-
通过 OBS 向 SRS 推流
-
flv.js 拉流低延迟播放
-
支持 RTMP/FLV/HLS 多协议
🧠 阿里云 EasyCV
-
配置简单:仅需视频截图即可请求识别 API
-
云端部署,不依赖本地模型
-
响应速度快、扩展性强
💡 高并发支撑策略
-
前端播放独立解码,不阻塞 UI
-
视频流接入分流至多个 SRS 实例
-
WebSocket 状态管理由 Redis 保持低延迟
-
接口异步,AI 分析为非阻塞模式
流程图
🧪 五、运行效果展示
以下是系统主要功能截图演示:
-
多路实时视频分屏
-
点击放大与播放界面
-
AI 异常截图弹窗
-
后台摄像头配置列表
-
录像播放面板
分屏预览界面
-
-
AI识别结果弹窗
-
录像选择与播放面板
🔧 六、项目部署说明
💻 技术栈:
-
Vue3 + Element Plus
-
Node.js + Express
-
flv.js
-
SRS 推流服务
-
阿里云 EasyCV
-
Nginx 静态视频分发
-
MySQL / Redis
📁 项目结构
📝 七、总结与思考
✅ 项目亮点
-
视频监控 + AI分析 + 回放功能完整闭环
-
真实业务需求驱动,非概念性练习
-
可部署、可拓展、可展示,适合简历呈现
-
大并发架构有真实方案与可行优化点
📌 八、推荐部署与演示方式
-
本地通过 OBS 推流至 SRS
-
浏览器访问
localhost:8080
查看监控页 -
上传截图调用 AI 识别(模拟实时帧抓取)
-
在后厨主界面查看检测弹窗与回放窗口