数学在算法中的应用:数论和线性代数

本文探讨了数学在算法中的应用,包括模运算、快速幂、最大公约数(GCM)和最小公倍数(LCM)的概念与计算方法。深入讲解了素数的判定、筛法(埃氏筛与欧拉筛)以及质因数分解的原理,通过实例展示了如何在实际问题中应用这些数学工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

模运算

模运算为 a 除以 m 的余数,记为 a mod m = a % m
取模操作满足如下性质

操作 性质
(a + b) % m= ((a % m) + (b % m)) % m
(a - b) % m= ((a % m) - (b % m)) % m
(a * b) % m= ((a % m) * (b % m)) % m

快速幂

对于幂运算 an ,如果一个个的乘,时间复杂度为 O(n),如果用快速幂计算时间复杂度为 O(log2n)

快速幂的解法用了分治的思想,即先计算a2,再计算(a2)2,一直计算到an

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java识堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值