1,一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
2,想法:
肯定有规律可以找:
由条台阶的问题想到递归的思想:
这里n个台阶,青蛙在最后一次跳的情况有n种。用f(n)表示n个台阶时青蛙跳的种数。
那么有f(n) = f(n-1) + f(n-2) + .......+ f(1) + f(0);其中f(0)表示青蛙一次跳n阶。
同理f(n-1) = f(n-2) + f(n-3) + ........+f(1) + f(0);这里就可以看出规律了
f(n) = 2* {f(n-2) + f(n-3) + ...... + f(1) + f(0)};
即有f(n) = 2 * f(n-1)的规律。
3,牛客网代码:
class Solution {
public:
int jumpFloorII(int number) {
if (number <= 0)
{
return 0;
}
if (number == 1)
{
return number;
}
else
{
return 2 * jumpFloorII(number - 1);
}
}
};