线性代数之二:行列式

2.1 矩阵的行列式

2.1.1 行列式的记号与值

我们用两条竖线间包括的阵列表示给定矩阵的行列式,记作 det(A)

det(A)=a11a21am1a12a22am2.........a1na2namn

2.1.2 子式与余子式

定义:令 A=(aij) 为n阶方阵,并用 Mij 表示删除A中包含 aij 的行和列得到的n-1阶的矩阵,矩阵 Mij 的行列式称为 aij 的子式(minor)。

定义:定义 aij 的余子式(cofactor)为 Aij=(1)i+jdet(Mij)

因此行列式可以用余子式展开递归定义如下:

det(A)={a11a11A11+a12A12+...+a1nA1n n=1 n>1

定理:对于方阵A,det(A)可表示为A的任何行或列的余子式展开,即
det(A)=ai1Ai1+ai2Ai2+...+ainAin=a1jA1j+a2jA2j+...+anjAnj

定理:若A为n阶方阵,则 det(AT)=det(A)
定理:若A为n阶三角矩阵,则A的行列式等于A的对角线元素的乘积
定理:若A为n阶矩阵

  • 若A有一行或一列包含的元素全为零,则det(A)=0
  • 若A有两行或两列相等,或成比例,则det(A)=0

2.1.3 使用numpy计算行列式

import numpy as np
A = np.array([[1,2],[3,4]])
print np.linalg.det(A)

2.2 行列式的性质

引理:令A为n阶矩阵,若 Ajk 表示 ajk 的余子式,其中k=1,…,n则:

ai1Aj1+ai2Aj2+...+ainAjn={det(A)0 i=j ij

对行或列运算对行列式的作用总结如下:

  • 交换两行或列,改变行列式的符号
  • 矩阵某行或列乘以标量的作用是将行列式乘以这个标量
  • 将某行或列的倍数加到其他行或列不改变行列式的值

这里我们得到另一种计算det(A)的方法,即通过第I和III类行列变换,将A简化为三角矩阵,则对角线元素的乘积即为det(A)的值,而正负号取为 (1)k ,k为行或列变换的次数。

定理:n阶矩阵A是奇异的充分条件是 det(A)=0
定理:若A和B均为n阶矩阵,则 det(AB)=det(A)det(B)

2.3 克拉默法则

2.3.1 伴随矩阵

若A为n阶矩阵,定义A的伴随矩阵为adj A,则

adjA=A11A12A1nA21A22A2n.........An1An2Ann

为构造伴随矩阵,只需要将A的元素用它们的余子式替换,然后将结果矩阵转置。

下面给出一种计算矩阵逆的方法:若A是非奇异的,则有

A1=1det(A)adjA

2.3.2 克拉默法则

定理:令A为n阶矩阵,令 Ai 为矩阵A中第i列用b替换得到的矩阵,若x为方程组Ax=b的惟一解,则:

xi=det(Ai)det(A),i=1,2,...n

克拉默法则给出了一个将n阶线性方程组的解用行列式表示的便利方法。不过其计算量要比消元法要大。

2.3.3 向量积

在三维空间中,向量x,y的向量积可写为行列式:

xy=ix1y1jx2y2kx3y3

在牛顿力学中,向量积用于定义副法线方向。比方x乘y,右手四指并起来伸直指向x方向,然后再朝y方向弯起来,这时拇指所指方向就是向量积方向,向量积方向永远x,y垂直。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值