dubbo限流

单机限流

限流过滤器

package com.doudou.filter;

import org.apache.dubbo.common.URL;
import org.apache.dubbo.common.constants.CommonConstants;
import org.apache.dubbo.common.extension.Activate;
import org.apache.dubbo.rpc.*;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * @title CustomLimitFilter
 * @description 自定义限流过滤器
 * author zzw
 * version 1.0.0
 * create 2025/5/6 22:29
 **/
@Activate(group = CommonConstants.PROVIDER)
public class CustomLimitFilter implements Filter {
    /**
     * 存储计数资源的Map数据结构,预分配容量64,避免无谓的扩容消耗
     */
    private static final ConcurrentMap<String, AtomicInteger> COUNT_MAP = new ConcurrentHashMap<>(64);
    /**
     * QOS流量启动是否开启。 {@code true}:标识开启流量监测;@{@code 其它值}:标识不开启流量监测
     */
    public static final String KEY_QPS_ENABLE = "qps.enable";
    /**
     * 每个方法开启的限流检测值
     */
    public static final String KEY_QPS_VALUE = "qps.value";
    /**
     * 默认的限流检测值,默认为 30
     */
    public static final long DEFAULT_QPS_VALUE = 30L;

    @Override
    public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
        // 获取限流资源的结果
        // true:获取到计数资源
        // false:计数已满,无法获取计数资源
        // null:不需要限流
        Boolean acquired = null;
        try {
            // 获取限流技术资源
            acquired = tryAcquire(invoker.getUrl(), invocation);
            if (null != acquired && !acquired) {
                throw new RuntimeException("Failed to acquire service "
                        + String.join(".", invoker.getInterface().getName(), invocation.getMethodName())
                        + " because of overload.");
            }
            // 不限流或或者获取到限流资源,执行下一步调用
            return invoker.invoke(invocation);
        } finally {
            // 释放获取到的计数资源
            release(acquired, invoker.getUrl(), invocation);
        }
    }

    private void release(Boolean acquired, URL url, Invocation invocation) {
        // 未限流或者获取计数资源失败时,无需释放资源
        if (null == acquired || !acquired) {
            return;
        }
        String serviceKey = String.join("_", url.getServiceKey(), invocation.getMethodName());
        COUNT_MAP.get(serviceKey).decrementAndGet();
    }

    private Boolean tryAcquire(URL url, Invocation invocation) {
        // 判断是否开启限流
        // 获取全局配置 结果是8
        // url.getParameter(KEY_QPS_ENABLE);
        // 获取方法级别的配置 结果是5
        String qpsEnableFlag = url.getMethodParameter(invocation.getMethodName(), KEY_QPS_ENABLE);
        if (!Boolean.TRUE.toString().equals(qpsEnableFlag)) {
            // 限流开关的值不是true时,不开启限流
            return null;
        }

        // 获取限流监测值,未配置时默认30
        long qpsValue = url.getMethodParameter(invocation.getMethodName(), KEY_QPS_VALUE, DEFAULT_QPS_VALUE);
        // 构建限流的key
        String serviceKey = String.join("_", url.getServiceKey(), invocation.getMethodName());
        // 获取对应的计数器
        AtomicInteger currentCount = COUNT_MAP.get(serviceKey);
        if (null == currentCount) {
            // 第一次访问时没有计数对象值,进行计数容器的初始化。
            currentCount = COUNT_MAP.putIfAbsent(serviceKey, new AtomicInteger(0));
        }

        // 如果当前的计数器值大于等于配置的限流值时,返回false,表示未获取到计数资源
        if (currentCount.get() >= qpsValue) {
            return Boolean.FALSE;
        }

        currentCount.incrementAndGet();
        return Boolean.TRUE;
    }
}

META-INF/dubbo/org.apache.dubbo.rpc.Filter

consumerLimit=com.doudou.filter.CustomLimitFilter

限流服务配置

import com.doudou.demo.api.RoleQueryFacade;
import org.apache.dubbo.config.annotation.DubboService;
import org.apache.dubbo.config.annotation.Method;

import java.util.concurrent.TimeUnit;

/**
 * @title RoleQueryFacadeImpl
 * @description <TODO description class purpose>
 * author zzw
 * version 1.0.0
 * create 2025/5/6 23:27
 **/
@DubboService(methods = {@Method(name = "queryRoleList", parameters = {"qps.enable", "true", "qps.value", "5"})},
        parameters = {"qps2.enable", "true", "qps2.value", "8"})
public class RoleQueryFacadeImpl implements RoleQueryFacade {
    @Override
    public String queryRoleList(String userId) {
        try {
            // 睡眠 1 秒,模拟一下查询数据库需要耗费时间
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        String result = String.format(System.currentTimeMillis() + ": Hello %s, 已查询该用户【角色列表信息】", userId);
        System.out.println(result);
        return result;
    }
}

限流现象

java.lang.RuntimeException: Failed to acquire service com.doudou.demo.api.RoleQueryFacade.queryRoleList because of overload.
	at com.doudou.filter.CustomLimitFilter.invoke(CustomLimitFilter.java:50)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.filter.AccessLogFilter.invoke(AccessLogFilter.java:120)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.filter.GenericFilter.invoke(GenericFilter.java:222)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.protocol.tri.h12.HttpContextFilter.invoke(HttpContextFilter.java:38)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.filter.ClassLoaderFilter.invoke(ClassLoaderFilter.java:54)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.filter.EchoFilter.invoke(EchoFilter.java:41)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.metrics.filter.MetricsFilter.invoke(MetricsFilter.java:86)
	at org.apache.dubbo.metrics.filter.MetricsProviderFilter.invoke(MetricsProviderFilter.java:37)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.filter.ProfilerServerFilter.invoke(ProfilerServerFilter.java:66)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.filter.ContextFilter.invoke(ContextFilter.java:191)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CopyOfFilterChainNode.invoke(FilterChainBuilder.java:349)
	at org.apache.dubbo.rpc.cluster.filter.FilterChainBuilder$CallbackRegistrationInvoker.invoke(FilterChainBuilder.java:197)
	at org.apache.dubbo.rpc.protocol.dubbo.DubboProtocol$1.reply(DubboProtocol.java:167)
	at org.apache.dubbo.remoting.exchange.support.header.HeaderExchangeHandler.handleRequest(HeaderExchangeHandler.java:110)
	at org.apache.dubbo.remoting.exchange.support.header.HeaderExchangeHandler.received(HeaderExchangeHandler.java:205)
	at org.apache.dubbo.remoting.transport.DecodeHandler.received(DecodeHandler.java:52)
	at org.apache.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(ChannelEventRunnable.java:64)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at org.apache.dubbo.common.threadlocal.InternalRunnable.run(InternalRunnable.java:39)
	at java.lang.Thread.run(Thread.java:748)
, dubbo version: 3.3.0, current host: 169.254.80.162, error code: 2-16. This may be caused by failed to retry do invoke, go to https://dubbo.apache.org/faq/2/16 to find instructions. 

分布式限流

限流过滤器

import java.util.Objects;
import org.apache.dubbo.common.URL;
import org.apache.dubbo.common.constants.CommonConstants;
import org.apache.dubbo.common.extension.Activate;
import org.apache.dubbo.rpc.*;
import org.springframework.data.redis.core.RedisTemplate;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;

/**
 * @title CustomLimitFilter
 * @description 自定义限流过滤器 jvm + redis 支持 author zzw version 1.0.0 create 2025/5/6 22:29
 **/
@Activate(group = CommonConstants.PROVIDER)
public class CustomLimitFilter implements Filter {

    /**
     * 存储计数资源的Map数据结构,预分配容量64,避免无谓的扩容消耗
     */
    private static final ConcurrentMap<String, AtomicInteger>              COUNT_MAP                     = new ConcurrentHashMap<>(
            64);
    /**
     * QOS流量启动是否开启。 {@code true}:标识开启流量监测;@{@code 其它值}:标识不开启流量监测
     */
    public static final  String                                            KEY_QPS_ENABLE                = "qps.enable";
    /**
     * 处理限流的工具,枚举值:jLimit - JVM限流;rLimit - Redis限流
     */
    public static final  String                                            KEY_QPS_TYPE                  = "qps.type";
    /**
     * 处理限流的工具 JVM限流key
     */
    public static final  String                                            VALUE_QPS_TYPE_OF_JVM_LIMIT   = "jLimit";
    /**
     * 处理限流的工具 Redis限流key
     */
    public static final  String                                            VALUE_QPS_TYPE_OF_REDIS_LIMIT = "rLimit";
    /**
     * 每个方法开启的限流检测值
     */
    public static final  String                                            KEY_QPS_VALUE                 = "qps.value";
    /**
     * 默认的限流检测值,默认为 30
     */
    public static final  long                                              DEFAULT_QPS_VALUE             = 30L;
    /**
     * 策略分发,通过不同的 qps.type 值来选择不同的限流工具进行获取计数资源处理
     */
    private static final Map<String, BiFunction<URL, Invocation, Boolean>> QPS_TYPE_ACQUIRE_MAP          = new ConcurrentHashMap<>(
            8);
    private static final Map<String, BiConsumer<URL, Invocation>>          QPS_TYPE_RELEASE_MAP          = new ConcurrentHashMap<>(
            8);

	// dubbo服务中的filter服务,变量有dubbo进行复制,无法通过@Autowire或@Resource进行复制
    private RedisTemplate<String, Integer> redisTemplate;
	// 对于需要赋值的,需要通过set方法,同时在外界构建一个实例,当参数放到到dubbo配置中
	/* 
	@Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(factory);
        template.setKeySerializer(RedisSerializer.string());
        template.setValueSerializer(RedisSerializer.json());
        return template;
    }
	*/
    public void setRedisTemplate(RedisTemplate<String, Integer> redisTemplate) {
        this.redisTemplate = redisTemplate;
    }

    /**
     * 初始化策略Map
     */
    public CustomLimitFilter() {
        init();
    }

    private void init() {
        QPS_TYPE_ACQUIRE_MAP.put(VALUE_QPS_TYPE_OF_JVM_LIMIT, (this::tryAcquireOfJvmLimit));
        QPS_TYPE_ACQUIRE_MAP.put(VALUE_QPS_TYPE_OF_REDIS_LIMIT, (this::tryAcquireOfRedisLimit));
        QPS_TYPE_RELEASE_MAP.put(VALUE_QPS_TYPE_OF_JVM_LIMIT, (this::releaseOfJvmLimit));
        QPS_TYPE_RELEASE_MAP.put(VALUE_QPS_TYPE_OF_REDIS_LIMIT, (this::releaseOfRedisLimit));
    }

    @Override
    public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
        // 获取限流资源的结果
        // true:获取到计数资源
        // false:计数已满,无法获取计数资源
        // null:不需要限流
        Boolean acquired = null;
        try {
            // 获取限流计数资源
            acquired = tryAcquire(invoker.getUrl(), invocation);
            if (null != acquired && !acquired) {
                throw new RuntimeException("Failed to acquire service " + String.join(".",
                        invoker.getInterface().getName(), invocation.getMethodName())
                        + " because of overload.");
            }
            // 不限流或或者获取到限流资源,执行下一步调用
            return invoker.invoke(invocation);
        } finally {
            // 释放获取到的计数资源
            release(acquired, invoker.getUrl(), invocation);
        }
    }

    private Boolean tryAcquire(URL url, Invocation invocation) {
        // 判断是否开启限流
        // 获取全局配置
        // url.getParameter(KEY_QPS_ENABLE);
        // 获取方法级别的配置
        String qpsEnableFlag = url.getMethodParameter(invocation.getMethodName(), KEY_QPS_ENABLE);
        if (!Boolean.TRUE.toString().equals(qpsEnableFlag)) {
            // 限流开关的值不是true时,不开启限流
            return null;
        }

        // 获取 qps.type 参数值,默认采用 JVM 内存来处理限流,若设置的类型从 Map 中找不到则当作不需要限流处理
        String qpsTypeValue = url.getMethodParameter(invocation.getMethodName(), KEY_QPS_TYPE,
                VALUE_QPS_TYPE_OF_JVM_LIMIT);
        BiFunction<URL, Invocation, Boolean> func = QPS_TYPE_ACQUIRE_MAP.get(qpsTypeValue);
        if (null == func) {
            return null;
        }

        // 根据配置的限流类型进行策略分发,按照不同的工具进行限流处理
        return func.apply(url, invocation);
    }

    private void release(Boolean acquired, URL url, Invocation invocation) {
        // 未限流或者获取计数资源失败时,无需释放资源
        if (null == acquired || !acquired) {
            return;
        }

        // 获取qps.type参数值,默认使用 JVM 内存来处理限流,若设置的类型从Map中找不到,则当做不限流处理
        String qpsTypeValue = url.getMethodParameter(invocation.getMethodName(), KEY_QPS_TYPE,
                VALUE_QPS_TYPE_OF_JVM_LIMIT);
        BiFunction<URL, Invocation, Boolean> func = QPS_TYPE_ACQUIRE_MAP.get(qpsTypeValue);
        if (null == func) {
            return;
        }

        func.apply(url, invocation);
    }

    /**
     * 使用 JVM 内存 进行资源加锁限流
     */
    private Boolean tryAcquireOfJvmLimit(URL url, Invocation invocation) {
        // 获取限流阈值
        long qpsValue = url.getMethodParameter(invocation.getMethodName(), KEY_QPS_VALUE,
                DEFAULT_QPS_VALUE);
        // 构建map的key值
        String serviceKey = String.join("_", url.getServiceKey(), invocation.getMethodName());

        // 获取对应的限流计数器对象
        AtomicInteger currentCount = COUNT_MAP.get(serviceKey);
        if (null == currentCount) {
            // 第一次进来时,没有计数器对象,进行初始话
            COUNT_MAP.putIfAbsent(serviceKey, new AtomicInteger(0));
            currentCount = COUNT_MAP.get(serviceKey);
        }

        // 如果当前的计数值大于等于配置的限流值时,则返回false,表示无法获取技术资源
        if (currentCount.get() >= qpsValue) {
            return Boolean.FALSE;
        }

        // 可以获取到资源,资源使用个数+1
        currentCount.incrementAndGet();
        return Boolean.TRUE;
    }

    /**
     * JVM 内存资源释放
     */
    private void releaseOfJvmLimit(URL url, Invocation invocation) {
        String serviceKey = String.join("_", url.getServiceKey(), invocation.getMethodName());
        COUNT_MAP.get(serviceKey).decrementAndGet();
    }


    /**
     * 使用 Redis 进行资源加锁 限流
     */
    private Boolean tryAcquireOfRedisLimit(URL url, Invocation invocation) {
        // 获取限流阈值
        long qpsValue = url.getMethodParameter(invocation.getMethodName(), KEY_QPS_VALUE,
                DEFAULT_QPS_VALUE);

        // 构建map的key值
        String serviceKey = String.join("_", url.getServiceKey(), invocation.getMethodName());

        // 获取当前key已使用的资源计数
        Integer currentCount = redisTemplate.opsForValue().get(serviceKey);
        if (Objects.isNull(currentCount)) {
            currentCount = 1;
        }
        if (currentCount >= qpsValue) {
            return Boolean.FALSE;
        }

        // 当前还有资源可以使用,资源数使用+1
        redisTemplate.opsForValue().increment(serviceKey);
        return Boolean.TRUE;
    }

    /**
     * redis 限流器解锁
     */
    private void releaseOfRedisLimit(URL url, Invocation invocation) {
        // 构建map的key值
        String serviceKey = String.join("_", url.getServiceKey(), invocation.getMethodName());
        redisTemplate.opsForValue().decrement(serviceKey);
    }

}

服务提供者限流配置

import com.doudou.demo.api.HelloService;
import java.util.concurrent.TimeUnit;
import org.apache.dubbo.config.annotation.DubboService;
import org.apache.dubbo.config.annotation.Method;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * @author admin
 */
@DubboService(methods = {
        @Method(name = "hello", parameters = {"qps.enable", "true", "qps.value", "3", "qps.type",
                "jLimit"}),
        @Method(name = "hello2", parameters = {"qps.enable", "true", "qps.value", "3", "qps.type",
                "rLimit"})})
public class HelloServiceImpl implements HelloService {

    private Logger logger = LoggerFactory.getLogger(HelloServiceImpl.class);

    @Override
    public String hello(String name) {
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        logger.info("hello ----------------------------------->>> {}", name);
        return "hello " + name;
    }

    @Override
    public String hello2(String name) {
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        logger.info("hello2 {}", name);
        return "hello2 " + name;
    }
}

基于gcc的stm32环境搭建源码+文档说明.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值