最大字段和 动态规划

这篇博客介绍了如何使用动态规划算法来求解一维数组的最大字段和以及二维矩阵的最大子矩阵和。首先,通过定义数组b来存储截止到每个位置的最大字段和,然后根据前一个元素的字段和与当前元素的大小关系更新b数组。对于二维矩阵问题,博主使用双重循环遍历每一行,并在每行中计算最大子矩阵和,最终找到全局的最大子矩阵和。这种方法有效地解决了寻找连续子数组最大和的问题。
摘要由CSDN通过智能技术生成

求数组a的最大字段和
定义一个数组b
b[i]表示截止到第i个数的最大字段和
那么我们知道如果b[i-1]<=0,b[i]的值应该为a[i]
如果b[i-1]>0,b[i]的值应该是b[i-1]+a[i]

int maxsum(int n, int *a)
{
	int sum = 0, b = 0;
	for (int i = 1; i <= n; i++)
	{
		if (b > 0)
			b += a[i];
		else b = a[i];
		if (b > sum)
			sum = b;
	}
	return sum;
}

推广到二维的最大子矩阵和问题:

int maxsum2(int m, int n, int **a)
{
	int sum = 0;
	int *b = new int[n + 1];
	for (int i = 1; i <= m; i++)
	{
		for (int k = 1; k <= n; k++)
			b[k] = 0;               //b[k]记录第i行到第j行的第k列的数字之和
		for (int j = i; j <= m; j++) {
			for (int k = 1; k <= n; k++)
				b[k] += a[j][k];        //i=1,j=1;i=1,j=2;...i=2,j=2;i=2,j=3;.....
			int max = Maxsum(n, b);      //一维数字最大字段和
			if (max > sum)
				sum = max;
		}
	}
	return sum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值