Andrew Ng机器学习公开课笔记 — 线性回归和梯度下降

线性回归(Linear Regression) 
先看个例子,比如,想用面积和卧室个数来预测房屋的价格 
训练集如下 :
image

首先,我们假设为线性模型,那么hypotheses定义为 
image , image

其中x1,x2表示面积和#bedrooms两个feature 
那么对于线性模型,更为通用的写法为 
image 
其中把θ和X看成向量,并且x0=1,就可以表示成最后那种,两个向量相乘的形式

那么线性回归的目的,就是通过训练集找出使得误差最小的一组参数θ(称为学习) 
为了可以量化误差,定义损失函数(cost function) 
image 
比较好理解,就是训练集中所有样本点,真实值和预测值之间的误差的平方和 
其中1/2是为了后面计算方便,求导时会消掉 
所以我们目的就是找到θ使得J(θ)最小,这就是最小二乘法(最小平方),很容易理解

梯度下降(gradient descent) 
为了求解这个最优化问题,即找到θ使得J(θ)最小,可以有很多方法 
先介绍梯度下降法 
这是一种迭代方法,先随意选取初始θ,比如θ=0,然后不断的以梯度的方向修正θ,最终使J(θ)收敛到最小 
当然梯度下降找到的最优是局部最优,也就是说选取不同的初值,可能会找到不同的局部最优点 
但是对于最小二乘的损失函数模型,比较简单只有一个最优点,所以局部最优即全局最优

对于某个参数的梯度,其实就是J(θ)对该参数求导的结果 
所以对于某个参数每次调整的公式如下, 
                               image  

α is called the learning rate,代表下降幅度,步长,小会导致收敛慢,大会导致错过最优点 
所以公式含义就是,每次在梯度方向下降一步

下面继续推导,假设训练集里面只有一个样本点,那么梯度推导为, 
                         image 
就是求导过程,但是实际训练集中会有m个样本点,所以最终公式为, 
                     image 
因为θ中有多个参数,所以每次迭代对于每个参数都需要进行梯度下降,直到J(θ)收敛到最小值 
这个方法称为batch gradient descent,因为每次计算梯度都需要遍历所有的样本点 
这是因为梯度是J(θ)的导数,而J(θ)是需要考虑所有样本的误差和 
这个方法问题就是,扩展性问题,当样本点很大的时候,基本就没法算了

所以提出一种stochastic gradient descent(随机梯度下降) 
想法很简单,即每次只考虑一个样本点,而不是所有样本点 
那么公式就变为, 
                            image  

其实意思就是,每次迭代只是考虑让该样本点的J(θ)趋向最小,而不管其他的样本点 
这样算法会很快,但是收敛的过程会比较曲折 
整体效果,还是可以will be reasonably good approximations to the true minimum 
所以适合用于较大训练集的case

Normal Equations :
前面说了如何用梯度下降来解线性回归问题 
其实对于线性回归,也可以不用这种迭代最优的方式来求解 
因为其实可以通过normal equations直接算出θ,即具有解析解

首先对于训练集,可以写成下面的向量形式

                          image image

由于 image ,所以 
                         image  

并且 image ,故有 
                           image

可以看到经过一系列的推导,J(θ)有了新的表达形式 
那么J(θ)的梯度,即求导,可以得到 
                           image    
而J(θ)最小时,一定是梯度为0时,即可以推出normal equations 
                           image 
所以使J(θ)最小的θ的值可以直接求出, 
                           image

可以参考,Normal Equations


以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值