数值分析-劈因子法(贝尔斯托法)python3实现

"""
贝尔斯托法:与牛顿法有松散关系的一种迭代方法,为求多项式的复根
公式:f5(x)=(x+1)(x-6)(x+7)(x-2)(x+3)
目的:求的该方程式的复根
具体方法:
①多项式迭代除去二次因式,x^2-r*x-s,可以得到复根
  为什么除以二次因式可以得到复根:

②求偏导数
③得到r和s以此改进
  计算误差 r和s
  误差均低于给定的终止条件时可以得到根
④结果可能:
    1.三阶或者以上以r,s为初始值应用
    2.商是二次可利用求根公式得到值
    3.商为一次多项式 由单根公式得到
补充:牛顿法-高阶方程求根存在复根情况
具体方法:
构造复变函数,x是复数
二元实值函数复合定义域以及函数值
对牛顿迭代公式的f(x)和F‘(x)除以因式
得最终表达式

"""
import sys
sys.setrecursionlimit(10000) #例如这里设置为一百万   递归深度不够
#RecursionError: maximum recursion depth exceeded in comparison
#1073741571错误是栈溢出,系统默认的栈空间大小是1MB
print('贝尔斯托法求解多项式f(x)=x^5-3.5*x^4+2.75*x^3+2.125*x^2-3.875*x+1.25的根,使用初始估计r=s=-1并迭代满足条件t=1%')
i = 0 # 循环标记量
#数组存储函数式得各个系数
a = [1.25,-3.875,2.125,2.75,-3.5,1]#依次存放a0,a1,a2...
b = ['b0', 'b1', 'b2', 'b3', 'b4', 'b5']
c = ['c0','c1','c2','c3','c4','c5']
rs=[-1,-1,'r','s']#上一次的rs和这一次rs
rs_0 = ['%r','%s']#误差分析
n = 5 #代表多项式的项数
x = ['x0','x1','x2','x3','x4']
n_0=[3,1]
#求B
def B(r,s):
    global i
    i = 3
    b[5]=round(a[5],5)#bn = an
    b[4]=round(a[4]+r*b[5],5)
    while i!=-1:
        b[i]=round(a[i]+r*b[i+1]+s*b[i+2],5)
        i=i-1
#求C
def C(r,s):
    global i
    i = 3
    c[5]=round(b[5],4)
    c[4]=round(b[4]+r*c[5],4)
    while i!=-1:
        c[i] = round(b[i]+r*c[i+1]+s*c[i+2],5)
        i = i-1

#计算当前r,s存入rs[]
def Analays():
    r = (b[0]*c[3]-b[1]*c[2])/(c[2]*c[2]-c[1]*c[3])+rs[0]
    s = (b[0]*c[2]-b[1]*c[1])/(c[3]*c[1]-c[2]*c[2])+rs[1]
    rs[2] = round(r, 4)
    rs[3] = round(s, 4)

#误差分析,存入rs_0[]
def Error():
    rs_0[0]=round((rs[2]-rs[0])/rs[2],5)
    rs_0[1]=round((rs[3]-rs[1])/rs[3],5)
    rs[0]=rs[2]
    rs[1]=rs[3]


w = 0#题设题解的下标
j = 0#存放答案的下标
count = 0#标记迭代次数
def Result(r,s):#贝尔斯托法计算结果
    global n,w,j,count
    count = count+1
    B(r, s)
    C(r, s)
    Analays()
    Error()
    if (abs(rs_0[0])<0.01)|(abs(rs_0[1])<0.01): #误差满足条件
        print('经过',count,'次迭代得')
        x[j] = (rs[2]+(rs[2]**2+4*rs[3])**(1/2))/2  # 4
        print('x',j,'=',x[j])
        j = j + 1
        x[j] = (rs[2]-(rs[2]**2+4*rs[3])**(1/2))/2  # 3
        print('x',j,'=',x[j])
        j =j+1
        n = n_0[w] # n代表当前计算多项式项数
        w=w+1
        if n == 1:
            x[4] = round((-rs[2]) / rs[3],0)  # 单项式求解
            print('x', 4, '=', x[4])
            print('多项式的根:',x)
        elif (n == 2):
            print('二次项求实根:此题目不需计算')
        elif (n > 2):#传入修正的r,s值  商作为因式迭代
            count = 0
            a[0] =b[2]
            a[1] = b[3]
            a[2] = b[4]
            a[3] = b[5]
            a[4] = 0
            a[5] = 0
            Result(rs[2], rs[3])
    else:#不满足近似条件
        Result(rs[2],rs[3])#用修正的值继续迭代

Result(-1,-1)#调用
结果:
贝尔斯托法求解多项式f(x)=x^5-3.5*x^4+2.75*x^3+2.125*x^2-3.875*x+1.25的根,使用初始估计r=s=-1并迭代满足条件t=1%
经过 4 次迭代得
x 0 = 0.5
x 1 = -1.0
经过 5 次迭代得
x 2 = (1+0.49939963956735095j)
x 3 = (1-0.49939963956735095j)
x 4 = 2.0
多项式的根: [0.5, -1.0, (1+0.49939963956735095j), (1-0.49939963956735095j), 2.0]

Process finished with exit code 0
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
各种数学算的MATLAB实现 第4章: 插值 函数名 功能 Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 SecSample 求已知数据点的二次样条插值多项式及其插值点处的值 ThrSample1 求已知数据点的第一类三次样条插值多项式及其插值点处的值 ThrSample2 求已知数据点的第二类三次样条插值多项式及其插值点处的值 ThrSample3 求已知数据点的第三类三次样条插值多项式及其插值点处的值 BSample 求已知数据点的第一类B样条的插值 DCS 用倒差商算求已知数据点的有理分式形式的插值分式 Neville 用Neville算求已知数据点的有理分式形式的插值分式 FCZ 用倒差商算求已知数据点的有理分式形式的插值分式 DL 用双线性插值求已知点的插值 DTL 用二元三点拉格朗日插值求已知点的插值 DH 用分片双三次埃尔米特插值求插值点的z坐标 第5章: 函数逼近 Chebyshev 用切比雪夫多项式逼近已知函数 Legendre 用勒让德多项式逼近已知函数 Pade 用帕德形式的有理分式逼近已知函数 lmz 用列梅兹算确定函数的最佳一致逼近多项式 ZJPF 求已知函数的最佳平方逼近多项式 FZZ 用傅立叶级数逼近已知的连续周期函数 DFF 离散周期数据点的傅立叶逼近 SmartBJ 用自适应分段线性逼近已知函数 SmartBJ 用自适应样条逼近(第一类)已知函数 multifit 离散试验数据点的多项式曲线拟合 LZXEC 离散试验数据点的线性最小二乘拟合 ZJZXEC 离散试验数据点的正交多项式最小二乘拟合 第6章: 矩阵特征值计算 Chapoly 通过求矩阵特征多项式的根来求其特征值 pmethod 幂求矩阵的主特征值及主特征向量 rpmethod 瑞利商加速幂求对称矩阵的主特征值及主特征向量 spmethod 收缩求矩阵全部特征值 ipmethod 收缩求矩阵全部特征值 dimethod 位移逆幂求矩阵离某个常数最近的特征值及其对应的特征向量 qrtz QR基本算求矩阵全部特征值 hessqrtz 海森伯格QR算求矩阵全部特征值 rqrtz 瑞利商位移QR算求矩阵全部特征值 第7章: 数值微分 MidPoint 中点公式求取导数 ThreePoint 三点求函数的导数 FivePoint 五点求函数的导数 DiffBSample 三次样条求函数的导数 SmartDF 自适应求函数的导数 CISimpson 辛普森数值微分求函数的导数 Richason 理查森外推算求函数的导数 ThreePoint2 三点求函数的二阶导数 FourPoint2 四点求函数的二阶导数 FivePoint2 五点求函数的二阶导数 Diff2BSample 三次样条求函数的二阶导数 第8章: 数值积分 CombineTraprl 复合梯形公式求积分 IntSimpson 用辛普森系列公式求积分 NewtonCotes 用牛顿-科茨系列公式求积分 IntGauss 用高斯公式求积分 IntGaussLada 用高斯拉道公式求积分 IntGaussLobato 用高斯—洛巴公式求积分 IntSample 用三次样条插值求积分 IntPWC 用抛物插值求积分 IntGaussLager 用高斯-拉盖尔公式求积分 IntGaussHermite 用高斯-埃尔米特公式求积分 IntQBXF1 求第一类切比雪夫积分 IntQBXF2 求第二类切比雪夫积分 DblTraprl 用梯形公式求重积分 DblSimpson 用辛普森公式求重积分 IntDBGauss 用高斯公式求重积分 第9章: 方程求根 BenvliMAX 贝努利求按模最大实根 BenvliMIN 贝努利求按模最小实根 HalfInterval 用二分求方程的一个根 hj 用黄金分割求方程的一个根 StablePoint 用不动点迭代求方程的一个根 AtkenStablePoint 用艾肯特加速的不动点迭代求方程的一个根 StevenStablePoint 用史蒂芬森加速的不动点迭代求方程的一个根 Secant 用一般弦截求方程的一个根 SinleSecant 用单点弦截求方程的一个根 DblSecant 用双点弦截求方程的一个根 PallSecant 用平行弦截求方程的一个根 ModifSecant 用改进弦截求方程的一个根 StevenSecant 用史蒂芬森求方程的一个根 PYZ 用因子求方程的一个二次因子 Parabola 用抛物线求方程的一个根 QBS 用钱伯斯求方程的一个根 NewtonRoot 用牛顿求方程的一个根 SimpleNewton 用简化牛顿求方程的一个根 NewtonDown 用牛顿下山求方程的一个根 YSNewton 逐次压缩牛顿求多项式的全部实根 Union1 用联合1求方程的一个根 TwoStep 用两步迭代求方程的一个根 Montecarlo 用蒙特卡洛求方程的一个根 MultiRoot 求存在重根的方程的一个重根 第10章: 非线性方程组求解 mulStablePoint 用不动点迭代求非线性方程组的一个根 mulNewton 用牛顿求非线性方程组的一个根 mulDiscNewton 用离散牛顿求非线性方程组的一个根 mulMix 用牛顿-雅可比迭代求非线性方程组的一个根 mulNewtonSOR 用牛顿-SOR迭代求非线性方程组的一个根 mulDNewton 用牛顿下山求非线性方程组的一个根 mulGXF1 用两点割线的第一种形式求非线性方程组的一个根 mulGXF2 用两点割线的第二种形式求非线性方程组的一个根 mulVNewton 用拟牛顿求非线性方程组的一组解 mulRank1 用对称秩1算求非线性方程组的一个根 mulDFP 用D-F-P算求非线性方程组的一组解 mulBFS 用B-F-S算求非线性方程组的一个根 mulNumYT 用数值延拓求非线性方程组的一组解 DiffParam1 用参数微分中的欧拉求非线性方程组的一组解 DiffParam2 用参数微分中的中点积分求非线性方程组的一组解 mulFastDown 用最速下降求非线性方程组的一组解 mulGSND 用高斯牛顿求非线性方程组的一组解 mulConj 用共轭梯度求非线性方程组的一组解 mulDamp 用阻尼最小二乘求非线性方程组的一组解 第11章: 解线性方程组的直接 SolveUpTriangle 求上三角系数矩阵的线性方程组Ax=b的解 GaussXQByOrder 高斯顺序消去求线性方程组Ax=b的解 GaussXQLineMain 高斯按列主元消去求线性方程组Ax=b的解 GaussXQAllMain 高斯全主元消去求线性方程组Ax=b的解 GaussJordanXQ 高斯-若当消去求线性方程组Ax=b的解 Crout 克劳特分解求线性方程组Ax=b的解 Doolittle 多利特勒分解求线性方程组Ax=b的解 SymPos1 LL分解求线性方程组Ax=b的解 SymPos2 LDL分解求线性方程组Ax=b的解 SymPos3 改进的LDL分解求线性方程组Ax=b的解 followup 追赶求线性方程组Ax=b的解 InvAddSide 加边求逆求线性方程组Ax=b的解 Yesf 叶尔索夫求逆求线性方程组Ax=b的解 qrxq QR分解求线性方程组Ax=b的解 第12章: 解线性方程组的迭代 rs 里查森迭代求线性方程组Ax=b的解 crs 里查森参数迭代求线性方程组Ax=b的解 grs 里查森迭代求线性方程组Ax=b的解 jacobi 雅可比迭代求线性方程组Ax=b的解 gauseidel 高斯-赛德尔迭代求线性方程组Ax=b的解 SOR 超松弛迭代求线性方程组Ax=b的解 SSOR 对称逐次超松弛迭代求线性方程组Ax=b的解 JOR 雅可比超松弛迭代求线性方程组Ax=b的解 twostep 两步迭代求线性方程组Ax=b的解 fastdown 最速下降求线性方程组Ax=b的解 conjgrad 共轭梯度求线性方程组Ax=b的解 preconjgrad 预处理共轭梯度求线性方程组Ax=b的解 BJ 块雅克比迭代求线性方程组Ax=b的解 BGS 块高斯-赛德尔迭代求线性方程组Ax=b的解 BSOR 块逐次超松弛迭代求线性方程组Ax=b的解 第13章: 随机数生成 PFQZ 用平方取中产生随机数列 MixMOD 用混合同余产生随机数列 MulMOD1 用乘同余1产生随机数列 MulMOD2 用乘同余2产生随机数列 PrimeMOD 用素数模同余产生随机数列 PowerDist 产生指数分布的随机数列 LaplaceDist 产生拉普拉斯分布的随机数列 RelayDist 产生瑞利分布的随机数列 CauthyDist 产生柯西分布的随机数列 AELDist 产生爱尔朗分布的随机数列 GaussDist 产生正态分布的随机数列 WBDist 产生韦伯西分布的随机数列 PoisonDist 产生泊松分布的随机数列 BenuliDist 产生贝努里分布的随机数列 BGDist 产生贝努里-高斯分布的随机数列 TwoDist 产生二项式分布的随机数列 第14章: 特殊函数计算 gamafun 用逼近计算伽玛函数的值 lngama 用Lanczos算计算伽玛函数的自然对数值 Beta 用伽玛函数计算贝塔函数的值 gamap 用逼近计算不完全伽玛函数的值 betap 用逼近计算不完全贝塔函数的值 bessel 用逼近计算伽玛函数的值 bessel2 用逼近计算第二类整数阶贝塞尔函数值 besselm 用逼近计算变型的第一类整数阶贝塞尔函数值 besselm2 用逼近计算变型的第二类整数阶贝塞尔函数值 ErrFunc 用高斯积分计算误差函数值 SIx 用高斯积分计算正弦积分值 CIx 用高斯积分计算余弦积分值 EIx 用高斯积分计算指数积分值 EIx2 用逼近计算指数积分值 Ellipint1 用高斯积分计算第一类椭圆积分值 Ellipint2 用高斯积分计算第二类椭圆积分值 第15章: 常微分方程的初值问题 DEEuler 用欧拉求一阶常微分方程的数值解 DEimpEuler 用隐式欧拉求一阶常微分方程的数值解 DEModifEuler 用改进欧拉求一阶常微分方程的数值解 DELGKT2_mid 用中点求一阶常微分方程的数值解 DELGKT2_suen 用休恩求一阶常微分方程的数值解 DELGKT3_suen 用休恩三阶求一阶常微分方程的数值解 DELGKT3_kuta 用库塔三阶求一阶常微分方程的数值解 DELGKT4_lungkuta 用经典龙格-库塔求一阶常微分方程的数值解 DELGKT4_jer 用基尔求一阶常微分方程的数值解 DELGKT4_qt 用变形龙格-库塔求一阶常微分方程的数值解 DELSBRK 用罗赛布诺克半隐式求一阶常微分方程的数值解 DEMS 用默森单步求一阶常微分方程的数值解 DEMiren 用米尔恩求一阶常微分方程的数值解 DEYDS 用亚当斯求一阶常微分方程的数值解 DEYCJZ_mid 用中点-梯形预测校正求一阶常微分方程的数值解 DEYCJZ_adms 用阿达姆斯预测校正求一阶常微分方程的数值解 DEYCJZ_adms2 用密伦预测校正求一阶常微分方程的数值解 DEYCJZ_ yds 用亚当斯预测校正求一阶常微分方程的数值解 DEYCJZ_ myds 用修正的亚当斯预测校正求一阶常微分方程的数值解 DEYCJZ_hm 用汉明预测校正求一阶常微分方程的数值解 DEWT 用外推求一阶常微分方程的数值解 DEWT_glg 用格拉格外推求一阶常微分方程的数值解 第16章: 偏微分方程的数值 peEllip5 用五点差分格式解拉普拉斯方程 peEllip5m 用工字型差分格式解拉普拉斯方程 peHypbYF 用迎风格式解对流方程 peHypbLax 用拉克斯-弗里德里希斯格式解对流方程 peHypbLaxW 用拉克斯-温德洛夫格式解对流方程 peHypbBW 用比姆-沃明格式解对流方程 peHypbRich 用Richtmyer多步格式解对流方程 peHypbMLW 用拉克斯-温德洛夫多步格式解对流方程 peHypbMC 用MacCormack多步格式解对流方程 peHypb2LF 用拉克斯-弗里德里希斯格式解二维对流方程的初值问题 peHypb2FL 用拉克斯-弗里德里希斯格式解二维对流方程的初值问题 peParabExp 用显式格式解扩散方程的初值问题 peParabTD 用跳点格式解扩散方程的初值问题 peParabImp 用隐式格式解扩散方程的初边值问题 peParabKN 用克拉克-尼科尔森格式解扩散方程的初边值问题 peParabWegImp 用加权隐式格式解扩散方程的初边值问题 peDKExp 用指数型格式解对流扩散方程的初值问题 peDKSam 用萨马尔斯基格式解对流扩散方程的初值问题 第17章: 数据统计和分析 MultiLineReg 用线性回归估计一个因变量与多个自变量之间的线性关系 PolyReg 用多项式回归估计一个因变量与一个自变量之间的多项式关系 CompPoly2Reg 用二次完全式回归估计一个因变量与两个自变量之间的关系 CollectAnaly 用最短距离算的系统聚类对样本进行聚类 DistgshAnalysis 用Fisher两类判别对样本进行分类 MainAnalysis 对样本进行主成分分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值