思路:利用大顶堆/小顶堆的特性~
将数组看作完全二叉树的层序遍历;
大顶堆为父结点值>孩子结点,小顶堆为父结点值>孩子结点;
设父结点下标为i(0≤i≤len/2-1,则左右孩子结点的下标为2i+1,2i+2。
则堆排序分为两步:
step1:调整数组,初步将所有的父结点调节成大值(大顶堆)
step2:进行循环操作,将父结点依次放到尾部(即,大的放到最后,形成了排序),然后对剩余的进行大顶堆调整!
#include<iostream>
#include<vector>
using namespace std;
vector<int> MySort(vector<int>& arr) ;
void exchange(vector<int>&arr,int i,int j);
void HeapAdjust(vector<int>& arr,int cur,int len);
void print(vector<int> input);
void exchange(vector<int>&arr,int i,int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
void print(vector<int> arr)
{
for(int i = 0;i<arr.size();++i)
{
cout<<arr[i]<<' ';
}
cout<<endl;
}
vector<int> MySort(vector<int>& arr) {
int len = arr.size();
for(int i = len/2-1;i>=0;--i)
HeapAdjust(arr, i, len);//先调整树为大顶堆
for(int i = len-1;i>=0;--i)
{
exchange(arr, 0, i);
HeapAdjust(arr, 0, i);
}
return arr;
}
void HeapAdjust(vector<int>& arr,int cur,int len)
{
int temp;
temp = arr[cur];
int j = 0;
for(j = 2*cur+1;j<len;j = j*2+1)//左孩子结点为2*cur+1
{
if(j<len-1&&arr[j]<arr[j+1])
j++;//找到左右结点中大的那个
if(temp>=arr[j])
break;//如果当前值已经比叶子结点大了,不需要进行交换
arr[cur] = arr[j];
cur = j;
}
arr[cur] = temp;
}
int main()
{
int input[] = {5,2,3,4,1};
vector<int> Input;
for(int i = 0;i<5;++i)
{
Input.push_back(input[i]);
}
cout<<"输入:\n";
print(Input);
vector<int> res;
res = MySort(Input);
cout<<"排序结果:\n";
print(res);
cout<<"此时Input为:\n";
print(Input);
}