数据结构与算法(2)——堆排序

思路:利用大顶堆/小顶堆的特性~
将数组看作完全二叉树的层序遍历;
大顶堆为父结点值>孩子结点,小顶堆为父结点值>孩子结点;
设父结点下标为i(0≤i≤len/2-1,则左右孩子结点的下标为2i+1,2i+2。
则堆排序分为两步:
step1:调整数组,初步将所有的父结点调节成大值(大顶堆)
step2:进行循环操作,将父结点依次放到尾部(即,大的放到最后,形成了排序),然后对剩余的进行大顶堆调整!
大话数据结构讲解
程序运行结果

#include<iostream>
#include<vector>
using namespace std;
vector<int> MySort(vector<int>& arr) ;
void exchange(vector<int>&arr,int i,int j);
void HeapAdjust(vector<int>& arr,int cur,int len);
void print(vector<int> input);
void exchange(vector<int>&arr,int i,int j)
    {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
void print(vector<int> arr)
{
	for(int i = 0;i<arr.size();++i)
	{
		cout<<arr[i]<<' '; 
	}
	cout<<endl;
}
vector<int> MySort(vector<int>& arr) {
        int len = arr.size();
        for(int i = len/2-1;i>=0;--i)
            HeapAdjust(arr, i, len);//先调整树为大顶堆
        for(int i = len-1;i>=0;--i)
        {
            exchange(arr, 0, i);
            HeapAdjust(arr, 0, i);
        }
        return arr;
    }

    void HeapAdjust(vector<int>& arr,int cur,int len)
    {
        int temp;
        temp = arr[cur];
        int j = 0;
        for(j = 2*cur+1;j<len;j = j*2+1)//左孩子结点为2*cur+1
        {
            if(j<len-1&&arr[j]<arr[j+1])
                j++;//找到左右结点中大的那个
            if(temp>=arr[j])
                break;//如果当前值已经比叶子结点大了,不需要进行交换
            arr[cur] = arr[j];
            cur = j;
        }
        arr[cur] = temp;
    } 

int main()
{
	int input[] = {5,2,3,4,1};
	vector<int> Input;
	for(int i = 0;i<5;++i)
	{
		Input.push_back(input[i]);
	}	 
	cout<<"输入:\n";
	print(Input);
	vector<int> res;
	res = MySort(Input);
	cout<<"排序结果:\n";
	print(res);
	cout<<"此时Input为:\n";
	print(Input);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值